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Three main reasons for wantillg to use high pressures at low tem
peratures can be distinguished as follows. In the first place. the phenom
enon to be studied may itself be specifically confined to low tempera
tures. 'Ve know from the third law of thermodynamics that a system 
in internal thermodynamic equilibrium must take up an "ordered" 

. state at sufficiently low tempern,tures; we may regard the onset of 
superconductivity or magnetic transitions in certain alloys and insula
tors as examples of this general tendency. To study such transitions 
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uruler preS8ure thus demands the combination of low temperatures and 
high pressures. 

In the second place, we may wish to work at low temperatures 
simply to get rid of thermal motion and its complications. As we 
approach the absolute zero, we reach a condition where all changes are 
governed hy mechanical, as opposed to thermodynamic, criteria of 
stability (i.e., the entropy terms in the free energy become negligible). 
In this way, for example, a P-V measurement can reveal and reflect 
rather directly the interatomic forces in a solid. Or again the mechani
cal properties of solids may take on a special simplicity in the absence 
of thermally activated processes. 

Thirdly, the technique of :investigation may itself require low tem
peratures. For example, most of the standard methods of determining 
Fermi surfaces require that the conduction electrons involved have 
long mean free paths and this in turn implies the use of low tempera
tures to diminish scattering by phonons. 

In what follows we shall be concerned mainly with the effect of 
pressure on electrical conductivity in metals, in particular at low 
temperatures. However, in order to understand these effects, we 
need to know as much as possible about their high-temperature be
haviour. ~loreover, as we shall see, we must also have as much infor
mation as possible about the Fermi surface, the velocities of the con
duction electrons and so on. We shall therefore also be concerned with 
the recent developments in which measurements of the change in 
Fermi surface under pressure are being studied. 

In all that follows, we shall limit the discussion to the effect of 
hydro8tatic pressures. 

II. TECHNIQUES 

To work at low temperatures with high pressures introduces its 
own problems. All substances under appreciable pressure become solid 
at very low temperatures so that we have to contend first with the 
problem of producing at low temperatures as good an approximation 
as possible to a truly hydrostatic pressure. Various methods have been 
used, but recent work has shown that some of these techniques are not 
always satisfactory. General techniques for using high pressure at low 
temperatures have been reviewed recently by Swenson (1964). We 
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therefore mention here only those that are of particular relevance to 
. work on Fermi surfaces and electrical conductivity. (But see also 

Dugdale, 1965; Stewart, 1965; Levy and Olsen, 1965.) 

A. LIQVID HELIU)I 

This is a straightforward method of producing pressure changes at 
low temperatures, used originally by Kamerlingh Onnes and his 
collaborators to study how pressme alters the superconducting transi
tion temperature (Sizoo and Onnes, 1925; Sizoo et al., 1925). The 
method is severely limited because helium solidifies lmder quite small 
pressures at low temperatures; at 10 K, the solidification pressure is 
about 25 b and at 40 K about 140 b (both pressures refer to 4He). The 
method has, however, found useful applications recently (see below) 
and is often valuable as a check against methods of transmitting pres
sure that invoh-e a solid transmitting medium. 

B . . THE ICE-BOMB TECH..'HQUE 

This mcthod waS introduced by Lazarew and Kun (1944) . It uses 
the pressure generated (up to about 1800 b) when water solidifies on 
cooling at constant volume . 

C. DIRECT CO)IPRESSIOY IN PISTON-CYLI~DER ARR.DWEMENT 

In this method as originally used at low temperatures, the pressure 
is transmitted by solid hydrogen, the hydrogen itself being first con
densed into the working cylinder and then compressed by means of a 
piston. The method was first used by Hettton (1955) to measure changes 
in residual resi tivity and superconducting transition temperature 
under pressUl'c. This direct-compression method, but using solin helium 
as the medium, has also been used by Goree and Scott (1966) (see 
below). The original reason for using hydrogen rather than helium was 
that hydrogen, at low enough temperatures, condenses as a solid 
whereas helium does not. except unner pressure. For this reason, 
hydrogen is rather casier to deal with. 

Brandt and Ginzbmg (1962) used a. wrect-compression method ill 
which friction betwecn the spe('imen and the pistoll and cylinder was 

H.P.R. 
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reduced by a byer of graphite. The method could be used to very 
high pressures (40 kb) and the pressure, in one version, could be changed 
at the low temperature being used. On the other hand, in order to 
secure an isotropic stress, the specimen had to undergo plastic defor
mation. This may be allowable in some experiments such as the effect 
of pressure on the superconducting transition temperature or on poly
crystals; but it has to be eliminated in work on galvanomagnetic 
properties where the damage may produce effects many times greater 
than those being studied (Itskeyich, 1964). 

D. FROZEN OIL-KEROSE~E 

This method has been used by Gaidukov and Itskevich (1963) and 
Itskevich (1964). In it the pressure (up to 15 kb) is first generated by a 
piston in a cylinder at room temperature where the oil-kerosene 
mixture is fluid. The fluid is then slowly solidified by cooling and 
finally the whole cylinder and piston can be cooled to helium tempera
tures. 

E. CLL)IP TEC~QUES 

These are extensions of the very-high-pressure techniques used at 
room temperature. They have been much used in studies of the super
conducting transition temperature and may well come into greater 
use as the pressure range at low temperatures is extended. Some ver
sions suffer from the disadvanta,ge (as do the techniques A and D 
above ) that the apparatus must be warmed to room temperature to 
change the pressure. Some ultra-high-pressure techniques (up to 
'"'-'500 kb) have also been used at low temperatures (see, for example, 
Dricknmer, 1965; Stager and Drickamer, 1963). 

F. HELIIDI GAS 

In this technique the pressure is generated in fluid helium at ;~ 

temperature close to, but just above, the correspomling solidification 
temperature (see Fig. 1). The helium is then allowed to solidify around 
the specimen IInder study by careful coolin!!. This process can either 
be at constant ,"olume (as used ol'iuinally by Dugdale and Hulbert, 
1957) or at constant pressure. This latter method was introduced by 

.. 
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Swenson and his collaborators and is a great improvement on the 
constant volume technique (Hinrichs and Swenson, 1961; Schirber 
and Swenson, 1961, 1962). It is an improvement in several ways: 
first the retained pressure at the lowest temperature (after cooling the 
solidified helium to say 10 K) is appreciably higher than in the COll

stant volume method where about one quarter is lost, largely because 
of the contraction on freezing. Secondly the fluid pressure obtained 

20.000 

40 60 80 100 
Temperature (OK) 

FlO. 1. Melting curve and lines of constant volume in solid 'He: the numbers 
indicate molar volumes. (From Dugdal. 1958. ) 

is known more accurately since the correction derived from the equa
tion of state of helium is smaller (Dugdale. 1958); see Fig. 1. And 
thirdly. the non-hydl'ostatic stresses imposed on the specimen can be 
made extremely small. In the solidification process at constant pres
sure the solid helium can grow from the fluid n.round the specimen 
from the bottom; ifthis is done slowly there should be no shear stresses 
on the specimen. Thereafter if the apptLmtus is cooled at constant 
volume. non-hydrostatic stresses will arise only because of the differ
ence in thermal expansion or contraction of the specimen and the solid 
helium. At low temperatures thermn.l expansion or contraction is 
small so that there 'will be no apprecittb1e relative mO\'ement of solid 
helium atHI specimen prodded the initial tempel'<.Lture is not too high. 
Consequently the pressure remains essentially hydrostatic. 

\Vhen we come to consider the work on Fermi surf:'1ces we shall have 
occasion to compare directly the results of some of these techniques. 

8* 
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They show that at least at the moderate pressures at which solid 
helium has so far been used (below 10 kb), this method yield::; a very 
good approximation to a truly hydrostatic pres. ure. In addition Goree 
and Scott (1 D6G) IHwe made someclirect comparisons of various methods 
of measuring the effect of pressure on electrical resistivity at low tem
peratUl"es. They used what I hu\-e called the "helium gas" technique 
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FIG. 2. Typical initial pressure cycles with Ag compressed in piston,c~'linder 
arrangement. Sample resistance is p lotted again"t sample pressure. (From Goree 
and Scott, 1966.) 

(in which the solid helium is formed from the fluid at the S,lme pressure) 
and the direct-compression method using both hydrogen and solid 
helium as the pressure medium. 

Of the first , the helium gas method, they say (p. 826): """e hu"e 
never encountered any CI.LSe of detectable deformation or hysteresis 
in the resistance mea 'urement when the experiments wel'c carefully 
performed in this manner." 

To test thc direct-compression method. they chose a soft metal, sil
ver, and compressed it at 4'20 K u sing both olid helium and solid 
hydrogen. They found as they expectctl that there was s i ~nificantl.\· 

less deformation of the samplc (as e"timated from hystere'.iis in it s 
resistance nllues) when soli( l helium was used rather than hydrogen. 
Figure 2 sho,,,s it typical initial preSRUI'C cycle 011 silver ohtaillcrl by the 
piston-cylin<lf'r method u"illg solid heliul11. 

b !f ; WI! 
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Although they recognized that their experiments were not compre
hensive, Goree and Scott concludeu: "(1) helium is a superior quasi
hydrostatic pressure transmitting medium to hydrogen ill piston
cylinder apparatus, but the difference ..... may not be great ..... 
(2) Piston-cylinder experiments performed with care can give results 
in fair agreement with accurate hydrostatic gas experiments but they 
are tricky and unreliable ..... (3) The two ice-bomb measurements 
[due to Kan and Lazarew (1958)] are in marked and quite unreasonable 
disagreement with all the others. . . .. (4) The helium gas system 
gives consistent, reproducible results and is greatly to be preferred 
over the other pressure systems considered." 

As we shall see below, there is other evidence to show that the ice
bomb and related techniques do not giye rise to hydrostatic pressures. 
Goree and Scott also comment on the use of the sharpness of super
conducting transitions as a criterion for having a good hydrostatic 
pressure. Because the ice-bomb technique could give such a sharp 
superconducting transition, this has been taken as evidence that the 
pressure was hydrostat.ic. Clearly this does not follow; a uniform (but 
non-hydrostatic) stress (e.g., a uniform shear) would give rise to a 
sharp transition. But even this may not be a necessary condition; it 
is, howe,er, a reasonable assumption. 

We now turn to the application of theSE:: methods to the determina
tion of the properties of the Fermi surface in metals under pressure. 

III. THE FERlIlI SL'RFACE AS A Fl~CTION OF PRESSURE 

There have been scveral attempts to determine ho,\' the shape of 
the Fermi surface of a metal changes with pressure. Here we are prima
rily interested in the monovalent luetals, since these are in some ways 
the simplest theoretically, particularly from the point of vicw of 
transport properties, anel since their properties huye been studied more 
intensively than those of other metals. On the other hand metals such 
as Zn, Pb and Al (on which pressure measurements have recently been 
made), have been shown to approximate well to the nearly free electron 
mOflel of a metal. For this reason and because the work on Zn makes 
!'os, ible a direct comparison of seyeru 1 high pressure techniques wc shall 
begin by having a look at some of the work on the Fermi surface of 
tht'se metals. In order to understand the results and the significanco 
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of this work, we are ultimately' led to consider the pseudo-potential 
approach to the description of the Fermi surface and to consider how 
it can predict pressure effects. 

A. EXPERDIEXTAL 

The methods that have been used to determine the effect of pressure 
on the Fermi surface and related properties of Zn are summarized in 
Table I which refers to the techniques of producing the high pressures 

TABLE L Investigations of the effect of pressure on the Fermi 
surface of Zn 

Authors 

Dmitrellko et al. 
(1959) 

Verkin & Dmitrenko 
( 1959) 

Gaiduko\' & Itskevich 
(1963) 

Balain et ai. 
(1960) 

Schirber (1965) 

Higgins & Marcus 
(1966) 

O'SulIh-an &: Schirber 
(1966) 

)[elz (196Ga) 

Method of 
investigating 

Fermi surface 

Torque de Haas-van 
Alphen 

Torque de Haas-van 
Alphen 

1\[agnetoresistance 
oscillations 

Ettinghausen-Nernst 
effect 

Oscillations in transverse 
magnetoresistance 

Torque de Haas-van 
Alphen 

de Haas-van Alphen 
(modulation technique) 

de Haas-van Alphen 
(modulation technique) 

Methods of 
producing 

pressure 

Ice-bomb 
technique 

Ice·bomb 
technique 

Frozen oil-
kerosene 

Liquid helium 

Helium gas 

Alloying 

Helium gas 
Liquid helium 

Helium gas 

ah'eady described. The methods of investigating the Fermi surface 
which are of importance here will now be summarized. 

1. The de Hafl8-van Alphen Effect (see, e.g., Shoenberg, 1957) 

This is probably the most important method of determining the 
shapes of Fermi surfaces. The effect discovered by de Haas and 
van Alphen refers to the oscillatory yuriatioll of the mu.gnetic-suscepti
bility of a singlo crystal of a. metal when the applied magnetic field, 
H, varies. The susceptibility is periodic in JIll (more correctly lIB) 
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a.nd from this period, P, the extremal cross-sectional area, A (or 
areas) of the Fermi surface which is normal to the field, can be deter
mined from the relationship: 

(1) 

where e and Ii haye their usual significance. 

.From the temperature dependence of the amplitude of the effect, 
the effective mass 

m*=f~) SA 
e 2n SE 

(2) 

for the relevant extremal orbit can be found. Once this is knOWll, the 
life time, T, of the electrons in that orbit can also be found from the 
field dependence of the amplitude. 

In order to observe the effect WeT should be comparable or large 
compared to unity and liwe ~ kT. Here We is the appropriate cyclo

eB 
tron frequency; We == m* . The first condition on We implies that high 

e 
fields are needed and long relaxation times, i.e., very pure materials 
at low temperatures so that the conduction electrons are not scattered 
too frequently by either impurities, imperfections or phonons. The 
second condition ensures that separation of the Landau le,els is large 
compared to their thermal broadening. 

There are several techniques commonly in use for observing de 
Haas-van Alphen oscilla.tions. 
1. The torque metllOd. In this the specimen is suspended from a torsion 
element in a uniform magnetic field. The couple on the element is 
then measured as a function of magnetic field for different relative 
orientations of crystal and field. The method is generally used for 
looking at small parts of the Fermi surface with comparatively small 
cross-sections. 
2. The pulsed-field method. In this technique large magnetic fields 
(up to, say, 200 kG) are produced by discharging a bank of condensers 
through a coil in which the specimen (suitably cooled) is placed. The 
magnetization of the specimen is measured by a pick-up coil surround
ing the specimen; effects duc to the changing magnetic field are largely 
compensated by means of a !':econd pick-up coil connected in opposition 
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to the fu'st and subject to the sn.me field. The output from the pick
up coils is then displayed on a cathode-ray tube, along with a signal 
representing the field variation. This display can then be photographed 
and the period of the oscillation can subsequently be measured. 
3. The modulation technique. This teclmique ,ms introduced by Shoen
berg and Stiles (1964) and makes use of the extreme stability of super
conducting magnets in their superconducting mode of operation. In 
this method, the specimen is placed inside a superconducting solenoid 
(giving, typically, fields up to 50 to 100 kG). When the current in the 
solenoid has been raised to a suitable ·mlue, the value of the current 
is made to change quite slowly (in some applications the magnet is 
put in its superconducting mode to hold the field constant). An addi
tional coil is then u·sed to modulate the field in the specimen at quite 
low frequencies (operation down to, say, 60 cis presents no difficulties). 
Since the susceptibility of the specimen is oscillatory, there is a non-

. linear response in the specimen; for convenience the second (or higher) 
harmonic of the input signal is picked up and amplified. From this 
response as a function of the applied field the period of the de Haas-van 
Alphen oscillations can be found. 

Because the modulation frequency can be made so low, this method 
lends itself readily to high pressure measurements; the superconduct
ing solenoid, the modulating coil and the pick-up coil can all be out
side the high-pressure vessel, which need contain only the single crystal 
of the metal under study (see for example, O'Sullivan and Schirber, 
1966; ~Ielz, 1966b). 

2. High-field Jl agneta-resistance 

The oscillatory behaviour of the magnetic susceptibility known as 
the de Haas-van Alphen effcct, just discussed, arises from the quanti
zation of the electron orbits in a magnetic field . These oscillatory effects 
are obseryable if the mean free path of the electrons is sufficiently 
large or, diffcrently expressed, if WeT> 1. Here We is the cyclotron 
frequency and T is the relaxation time of the conduction electrons 
involved in the particular orbit considered. 

Under these conditions many other properties show corresponding 
oscillatory effects; in particular the resistivity of the sample in 
high magnetic fields (tho Shuunikov-de Haas efiect - Shubnikov 
and de Haas, 19:W) and the Ettinghausen-Xernst effect. Both of these 
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have been used to study the Fermi surface under pressure. As in the 
de Haas-yan Alphen effect the period of the oscillations as a function 
of 11H measures the area of the extremal cross-section(s) normal to H. 

In adclition to this oscillatory effect in the maf:,rneto resistance, the 
field dependence of the magneto-resistance for different directions of 
the applied field can be used to determine certain dimemions of the 
Fermi surface related to its topology. This method was used by Caro
line and Schirber (1963) to look for changes in the Fermi surfaces of 
eu and Ag under pressure. The main features of the method are as 
follows. . 

Lifshitz and Peschanshii (1958) ha ve shown that multiply-c-onnected 
(open) Fermi surfaces show very characteristic behaviour in magneto
resistance at high fields. In a closed Fermi surface all the electron 
orbits in an applied magnetic field are necessarily closed. In these 
circumstances the magneto-resistance (2(H) saturates at high fields. 
This is true provided that the metal is not a compensated metal, i.e., 
with equal numbers of electrons and holes. lithe metal is compensated 
with a closed Fermi surface Q(H) varies as H2 for all field directions 
(see Fawcett, 1964). 

In an open Fermi surface it may be possible to find for certain field 
directions orbits that can, because of the topology of the surface, 
never close. For these clirections Q(H) varies as H2, whereas in the 
others where only closed orbits can occur (2(H) saturates. Of the possible 
open orbits one kind (referred to by Chambers (1962) as type B open 
orbits) can occur in a whole region of angles around certain symmetry 
ilirections. The solid angles that enclose these directions that support 
open orbits thus show on a stereogram as the boundaries of two
dimensional areas. Type A. open orbits can occur in planes of applied 
magnetic field so thnt their directions are represented by l'ines on a 
stereogram. The dimensions of these regions or lines can be found 
because sharp peaks in the maf,rneto-resistance are observerl when the 
applied field direction passes through a type A region or crosses a 
boundary of a type B region. (2(H) depends not only on the direction 
of the applied magnetic field but also on (x, the angle between the di
rection of the open orbit and the clli·ection of the electric current. In 
fact (2(H) varies as HZ cos2 (% in directions where open orbits arc in
volved. 
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3. Oscillatory Ettinghallsen-N ernst Effect 

This method was used by Balain et al. (1960) in their work on the 
Fermi surface of Zn under pressure. The Ettinglw.usen-Nernst coeffi
cient BEN (see, e.g., Jan, 1957) is defined by the relationship: 

(3) 

In this is it supposed that, with no current flowing in the x direction, 
a magnetic field, H, is applied along the z axis. A temperature gradient 
8T/8y is established along the y axis, and an electric field Ey in the 
y direction is then obser,ed (it is determined from the potential differ
ence across the specimen in the y direction divided by the correspond
ing thickness of the specimen). 

The oscillatory part of the coefficient BEN arises from the quantiza
tion of the conduction electron orbits in the field, H, and their passage 
through the Fermi level as in the de Haas-van Alphen effect. 

The oscillations are likewise periodic in I/H and their period, P, 
is given by: 

P = 2ne/AIi (4) 

where A is the extremal cross-sectional area of the Fermi surface nor
mal to H. 

4. The Fermi Surface of Zn under Pressure 

A comparison of the results from these different methods as applied 
to Zn has been made by O'Sullinl.1l and Schirber (1966) and is shown 
in Fig. 3. This refers to the extremal cross-sections of the ' needles in 
Zn with the magnetic field parallel to b3 (see Fig. 4); it illustrates that 
the de Haas-van Alphen measurements arc in very good agreement 
with those from the oscillatory magneto-resistance measurements of 
Schirber (1965). Both these sets of measurements used the helium 
gas technique. Moreover, the results from these measurements are 
strongly corroborated in two differcnt ways: 
(a) The initial slope is in close agreement with that found by Balain 

et al. (1960) who used truly hydrostatic pressures transmitted b~ .. 
liquid helium. Moreo,er, O'Sullivan and Schirber themselves used 
the liquid-helium technique (up to 140 h) to check the pres !lure 

"¥ 
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variation of the needle cross-sections. They did this using the 
phase-shiftt de Haas-van Alphen technique, which is possible 
when the pressure can be varied continuously without upsetting 
the other experimental conditions (in particular, the temperature). 

2'00 .-------------~ 
r _Berlincaurt and 

1'50 , 

.. 

1'00 

0'5 

o 

• 

. Steele (1954) 

• . O'Sullivan and 
Schirber ( 1966) 

t.-Schirber (1965) 

Gaidukav and 
' - llskevich (1963) 

x-Dmitrenka eta!. (1959) 

_0·5L-__ -L ___ ...L-__ ---l'-----'': 
1'8150 1'8200 1'8250 1'8300 

c/o 

FIG. 3. Change in extremal cross-section for needles in Zn as a function of "I'l 
ratio (After O'Sullivan and Schirber, 1\l6G.) 

FIG. 4. Part of the Fermi surface of Zn. The "needles" are the black ellipsoids 
in the middle of thc hexagon edges. (From O'Sullivan and Schirber, 19GG.) 

(b) The results of the pressure measurements form a smooth continua
tion to smaller values of cia of the data obtained by Berlineourt 

t For a description of this technique, see Section III D5 on noble metals. 
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and Steele (1954).t In the latter experiments the cia ratio changed 
simply because of the temperature change at constant (a,pproxi
mately atmospheric) pressure. As \\:e shall see below, the almost 
totally predominating factor that determines the cross-sectional 
area of the needles is the cia ratio. The results for the initial slope 
of the SJ-p cun'e are summarized in Table JI. 

TABLE II. Extremal cross-sectional area as a function of 
pressure in Zn (needles with field parallel to h3) 

32·0± 1·5 X 1O-!b- 1 

32±6xlO-~b-l 

30±3 X 10-!b-1 

12±3 X 1O-2b- 1 

Observer 

O'Sullivan & Schirber (1966) 
Balain et al. (1960) 
O'Sullivan & Schirber (1966) 
Gaidukov & Itskedch (1963) 

We can therefore conclude that the consistency between these differ
ent sets of experiments demonstrat(s that the helium gas technique 
gives reliable and reproducible results . \\"e see, however, in Fig. 3 
that the results obtained by the ice-bomb technique and by the oil
kerosene technique do 110t agree with each other or with the helium 
technique. The ice-bomb results are particularly notable because they 
give the wrong sign for the effect. ~Ielz (1966a) (see also O'Sullivan 
and Schirher) has suggested that this effect can be understood as fol
lows. In cooling the Zn crystal embedded in ice from the high tempera
ture where the pressure is first generated, the crystal, because of its 
anisotropic properties, contructs more in the c than in the a direction. 
~cause the ice cannot readily flow to compensate for this, the pressure 
in the c direction is reduced rela,tive to that in the a direction. Thus the 
cia. ratio is increased instead of decreased as it would have been under 
hydrostatic pressure. Similarly, as both O'Sulliyan and Schirber (1966) 
and ~relz (1966a) point out, effects of this sort, but to a lesser degree, 
could account for the discrepancies in the measurements of Ga.idukov 
and Itskevich (1963) using the oil-kerosene technique. More recent 
results at higher pressures (up to 15 kb) by Itskevieh et al. (1965) ill
diea.te that at these higher values the pressure produced by this 
method may uccome more uniform and isotropic. 

t In fact some re·interpretation of the data obtained by Berlincourt und Stl'eie 
W88 needed. 
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Because Zn is so anisotropic in it s thermal contraction , this exag
gerates the non-hydrostaticeffeet S ofmcthodsthat rel~- 011 setting up the 
pressure in a solid at high temperatures. Presumably, these methods 
would not fail so badly with cubic materials, but as we saw earlier 
they may not be successful eyen then. 

We have now seen something of the methods of measuring Fermi 
surfaces under pressure. Let us now see what physical understallding 
we can get from the results. A \'ery important clue to our understanding 
of several metals that have been investigated (e.g., Zn, AI, Pb, In) 
is obtained from the nearly-free-electron model of the Fermi surface. 
We shall therefore consider this before looking at the experimental 
results in detail. 

B. NEARLY-FREE-ELECTRON lVIODEL FOR Zs 

If we have a gas of free electrons (i.e., independent electrons mO\'ing 
in a uniform potential), the energy of an electron of momentum p or 
wavenumber k is just p2/2m or ft 2k2/2rn where m is the electron mass. 
If the electrons form a completely degenerate gas, all the energy levels 
up to a certain energy, E F , are occupied (each level with two elec
trons of opposite spin) and those above EF are empty. The surface in 
k space that separates the occupied from the unoccupied region is 
called the Fermi surface and so for free electrons it is just a sphere: 

~ (k2 + F + F) - E x y z - F 
2m 

(5) 

The radius of the sphere thus depends on E F ; i.e., on the numuer of 
electrons to be accommodated and on the volume available to them. 

If we ignore the bttice potential inside a metal, and interactions 
between the electrons , then in this simple approximation the Fermi 
surface of the metal is a sphere in k space whose volume is just suffi
cient to accommodate all the valence electrons of that metal. If the 
metal has ~7I,T atoms in ,"oIurne V with z valence electrons per atom 
then: 

E
F

= _3 ____ 3 ( 3)~ :t2ft2 (ZN)~ 
rr 2m V 

(6) 

where we have allowed for two electrons of opposite spin per trans
lational energy level. Thus EF varies inversely as two thirds power 

• H rtff 
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of the volume. }[oreover, the Fermi radius kF is relatecl to EF by the 
relation: 

(7) 

so that kF varies as V- l / 3 , i.e., inversely as the interatomic distance. 
Thus the simplest effects of pressure on the Fermi surface would be 
to increase the Fermi energy and Fermi radius. 

So far we have ignored the effect on the conduction electrons of the 
periodic potential in side the lattice. If the interaction of the electrons 
with the lattice potentia l is very weak, it makes itself felt only when 
the periodicity of the lattice in a particular direction coincides with 
or is a multiple of the periodicity of the electron wavelength propa
gating in that direction. On this basis the Brillouin zone structure of the 
lattice is built up. If, in k space, the k vector of a conduction electron 
reaches from the centre of the Brillouin zone to a point on the zone 
boundary then that electron satisfies the Bragg condition for reflection 
by the set of lattice planes associated with the particular zone boundary. 
\Vithin a given zone, the surfaces of constant energy must be contin
uous; only at the boundaries of the zone can discontinuities appear. 
Thus, in the limit of a vanishingly small potential, the constant energy 
surfaces are still spheres with modifications to their connectivity at the 
Bragg-reflection planes. For this reason it is convenient to map back 
into the first zone all the fragments of the surface that overlap into 
the second zone; likewise for those fragments in the third zone and so 
on. In this 'way, each sheet of the Fermi surface, con-esponding to 
each zone, forms a continuous surface when re-mapped. Harrison 
(1966) has de\·ised a con,enient method of doing this mapping and 
worked out the shapes of the vtLrious sheets of the Fermi surface 
(contributed by different zones) for various lattice structures with 
various numbers of valence electrons to the atom. 

A simple illustration of the scheme is given in Fig. 5, which shows 
the nearly-free-electron model of the Fermi surface of a simple square 
lattice in two dimensions (cf. also Pippanl, 1960). The reciprocal lattice 
is then also a square lattice. The Fermi surfuce is now a circle and the 
occupied region o,·erlal's into the seoOlHI Brillouin zone as seen in the 
extended zone scheme at (a) . In (b), the first sheet or baml (i.e., the 
occupied area in the fir t zone) is !':ho\\-n by jtself lIlle-hanged; the 
second sheet. 01· band, however, has now been re-mapped back into 
the first zone_ This is callpo the 1-edllceri zone scheme and represents the 
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same information as in (a) but differently displayed; with suitable 
labelllilg either is complete and unambigous. In (c) are shown the first 
and second bands in the repeated zone scheme, which brings out the 
possible continuous orbits accessible to an electron on any particular 
sheet (or band) of the Fermi surface. In (d) is shown Harrison's con
struction for deriving the reduced and repeated zone schemes. 

(0) (b) 

(c) 

(d) 

FIG. 5. (a). Fermi surface and fu'st two Brillouin zones in the extended zone 
scheme. (b). First and second bands in the reduced zone scheme. (c). First and 
second bands in the repeated zone schem e. (d). Harrison's construction to derive 
the reduced and repeated zone schemes. (After Jan, 1966.) 

In a ell bic material the effect of hydrostatic preSSure on the Fermi 
surface can easily be pictured to this degree of approximation. The 
pressure decreases the volume of the metal in real space and so in 
k space increases the Yolume, but not the shape, of the .Brillouin zone. 
The yolume of the Fermi sphere is changed in exactly the same pro
portions as that of the zone amI so there is no relative change of Fermi 
sphere and Brillouin zone. So to thi:s approximation pressure does not 
alter the relative size of different parts ofthe Fermi surfa('e; everything 
seales. 

In a hexagonal metal, such a . Zn , however, the situation is different . 
Now pres. me has the effeet of altering the cia ratio of the metal so 
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that the Brillouin zone in this case both changes size and changes 
shape under pressure. The extended Fermi surface remains, of course, 
spherical and its size changes in inverse proportion to the volume 
change of the metal. But because the Brillouin zone is changing shape, 
the lines of contact of the Fermi sphere with the zone boundaries are 
altered so that the sheets of the Fermi surface in the reduced scheme 

- -----------....., - .... 
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(a) ( b) 
FIG. 6. The segment of the Fermi surface of a divalt:n~ hexagonal m e tal in the 

nearly· free· electron approximation: (a), corresponding to an axial ratio of 1·633; 
(b), corresponding to an axial ratio of 1'862. (From Harri~on, 1965.) 

change ill magnitude 'relative to each other (cf. Figs. 6a and b). 
Consequently we see that if pressure can alter the cia ratio sufficiently, 
it can change the connectivity of the Fermi surface. Lifshitz (1960) 
predicted striking changes in the thermodynamic and transport pro
perties of a metal at transitions where this connectivity is broken. The 
search for such effects has been one of the impulses behind the study 
of pressure effects in the hexagonal metals. 

It is now clear how it is possible to calculate the changes in dimen
sion of the different sheets of the Fermi surfacc of Zn when the cia 
ratio changes, provided that the nearly-free-electron picture holds 
good. The geometry has been worked out in detail (Harrison, 1960; 
Higgins and J[areus. 19(6) and the predictions for changes under ' 
pressure deduced. For example the extremal area of the needles 
when the magnetic fieki is parallel to b3 is given by: 

s = 4:t {2:t)2 [( 27 V3 z ) ~ _ 1]2 
1 9 a 16:tc/a 

(8) 

whel'c now Z = 2 for zinc. (This expression is in the f01'1I1 given hy 
Higgins and Marcus, I !)(i6.) 

Uf j' 
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O'Sullivan a.nd Schirber use this expression to derive the pressure 
derivative 8 lnSl /8 P. With the appropriate values of (c/a) and its 
pressure derivath'e, equation (8) yields a value for a In81/a P of 
13 x 1O-2kb- 1 compared 'with an experimcntal value of 32 ± 1'5 X 10-2 

kb-1 . The authors emphasize, however, that the direct comparison 
must not be taken too seriously because of the extreme sensitivity of 
the result to small variations in the initial c/a value. 

To make a more realistic comparison of the nearly-free-electron 
prediction, O'Sullivan and Schirber compare their result with meas
urements of changes in 8 1 due to alloying by Higgins and Marcus 
(1966). On alloying, both the c/a ratio and the value of z (the number 
of valence electrons per atom) may change: in the pressure experiments, 
of course, only c/a changes. In their work, Higgins and ::\Iarcus found 
that on adding Cu to Zn, the value of 8 InS 1/8 Ine was 2'70 X 102 where 
e = z/(c/a). O'Sullivan and Schirber note that the contribution to 
changes in 8 1 from the factor a2 in the denominator outside the square 
bracket in equation (8) is negligible. Consequently, 8 1 depends essenti
ally only on z/(c/a) , i.e., on e. Thus the pressure results can be compared 
directly with those from alloying; from the pressure results, O'Sullivan 
and Schirber deduce a value for 8 lnS1/8 lne of 2'78 X 102 which is very 
close to the value deduced from the alloys. 

In addition to these observations on the needles, O'Sullivan and 
Schirber made measurements on other characteristic dimensions of the 
Fermi surface of Zn. In general, they found qualitative agreement with 
the nearly-free-electron model; if allowance is made for discrepancies 
between this model and the true Fermi surface of Zn at atmospheric 
pressure, the agreement is within a factor of about 2. O'Sullivan and 
Schirber also made some rather more refined calculations (see Section 

TIl D 3). 
Measurements of effective mass, m~, were also made on Zn to deter

mine how mi changes with pressure. The cyclotron mass is defined 
in relation to We the cyclotron frequency as follows: 

e 
wc=--H 

m* c 

(9) 

We measures the angula.r frequency with which an electron executes 
the particular orbit concerned when the applied field is H. In de 
Haas-van Alphen measurements this will be an extremal orbit. 

9 R.P.R. 
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:Measurements of m; are very valuable because they give a measure 
of the velocity associated with the particular orbit. This may be Reen 
as follows. The equation of motion of an electron of wavenumber kin 
a magnetic field His: 

dk 
-=evH 
dt 

(10) 

where v is the component of the velocity of the electron normal to H 
and k changes in a direction at right angles to both v and H. Thus 
the electron moves in an orbit on the Fermi surface in a plane normal 
to H. The time taken to complete an orbit is thus, from equation 
(10): 

• dk 1 

T=~ evH = eH <v) 
(11) 

where 1 is the perimeter of the orbit and (v) is the harmonic mean of 
the velocity round the orbit. Thus: 

2n 
wc =-= 

T 

eH 2n <v) 

1 

and by comparison with the definition (9): 

1 
m~=---

2n <v) 

(12) 

(13) 

Thus if we know m~ for a sufficient number of orbits, we can in principle 
find out how v varies over the Fermi surface. 

We can use equation (13) to find out how m; should change with 
pressure on the nearly-free-electron model. According to this model. 
I, the perimeter of an orbit, must be proportional to Swhere Slf is the 
area of the orbit in k space (under pressure the orbits do not, except at 
certain singularities. change shape but only size). Thus from equation 
(13) : 

dlnm~ 1 dLnS -----
dP 2 dP 

din <v) 

dP 
(14) 

Now the ,oelocity, t ', is the same all over the Fermi surface in the 

ne;;i t. ;. 
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approximation' we are using here and is just proportional to kF' i.e., 
to V- 1 /3 "here V is the yolume of the metal. Thus: 

dIn m~ 1 dl n 8 1 
-dP--=- = 2 -d-P- - 3 X (15) 

where X = - 2. ( 8V) ,the isothermal compressibilitv of the metal. 
V 8P T • 

O'Sullivan and Schirber tested this relation by measuring both the 
change with pressure of m~ and of S (as we have seen) for the extremal 
needle orbits normal to b3. They found: 

dIn m*c 
---'- = 14 X 10-2 kb-1 

dP 
compared to: 

(The second term on the right hand side of equation (15) is negligible). 
This again illustrates the value of this ,ery simple, nearly-free-electron 
model of the Fermi surface. 

We now turn to the results on cubic metals, such as aluminium and 
lead. Before doing so, however, we must see how the theory can be 
extended to cope with the more subtle changes in the Fermi surface 
under pressure in cubic materials where the approximation we have 
used hitherto would predict only a simple scaling effect. 

C. THE PSEUDO-POTENTIAL )IETHOD 

The general philosophy behind the pseudo-potential method (for a 
detailed account, see for example, Harrison, 1966) is that the forces 
on an electron inside an ion core are (1) a large attractive interaction 
with the nucleus and (2) a complicated interaction that arises from the 
presence of the other occupied electron orbitals about the nucleus. In 
some cases the second part can be considered to be derived from a 
repulsive potentia.l (the pseudo-potential) which largely offsets the 
attractive potential corresponding to the first force. There thus re
mains a small effective potential which can be treated by standard 
methods, for example, by perturbation theory. 
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The pseudo-potential method in its complete form "results from a 
tra.nsformation of the Schroedinger equation applied to the lattice 
potential, V(r), and is exact. In the transformation, the ordinary 
lattice potential, V(r), is as we saw replaced by a weak effective po
tential part of which arises from the pseudo-potential. This in its full 
generality, is a non-local integral operator, containing exchange terms 
and terms that arise from the orthogonalization of the crystal wave 
function to the occupied ion core electron states. The method becomes 
particularly useful if: 

(a) The pseudo-potential integral operator can be treated as essen
tially a simple potential. 

(b) The Fourier expansion of the resultant effective potential re
quires only a few terms corresponding to small reciprocal lattice 
vectors for its accurate representation. 

In the above description I have used the term "pseudo-potential" 
to refer to the repulsive part of the interaction that offsets the attrac
tiveinteraction with the nucleus. The resultant interaction I have called 
the "effective" interaction. This seems to have been the original usage, 
but it is now common to refer to the re8ultant potential as the pseudo
potential and so I shall do so from now on. 

The result of replacing the actual potential inside the crystal by the 
weak pseudo-potential is that now the problem to be solved in finding 
the band structure of the metal is formally equivalent to that of the 
nearly-free-electron model of a metal. 

Let me briefly remind the reader of how a simple one-dimensional 
calculation of this kind is carried out (Mott and Jones, 1936, p. 61). 
In a periodic lattice of lattice spacing a, the solution of the Schroedin
ger equation: 

d2 'IjJ 2m 
-+-(E- V)'IjJ=O 
dx2 h2 

(16) 

is a Bloch function: 

'IjJ = eikx u(x) 

where u(x), like V(x), is periodic with the period a. Let us expand u(x) 
in a Fourier series: 

¢i ... 
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- .. 
U{x) = 1: An e-2:< I nxla = 1: An e-I K .. x (17) 

n==-(O 

2nn 
where Kn = --. Suppose for simplicity that apart from the constant 

a 
term, AD. only one Fourier component Kl is important; we then have: 

1p = elk:< (Ao + Al e- I KIX) (18) 

==Aoelk:<+AleiklX where kl=k-Kl 

Substituting this solution in the Schroedinger equation we find: 

Aoelk:<{- k2 + 2m (E - V)} + Al eik1X{_ k~+ 2m (E - V)} = 0 
h2 . h2 

If we multiply by e- ikX and integrate from 0 to a, we get: 

S
Q2mA 

-Aok2a+ --O(E-V)dx 
/i2 o 

S
a 2mA _ _ __ 1 e-I Kl x V dx = 0 

h2 
o 

(19) 

(20) 

We choose our origin of energy so that the mean value of V va.nishes, 
i.e.: 

Q 

SV(x)dx=O 

° Thus we have: 
Ao (E - To) - Ai V: = 0 

Similarly by mult.iplying by e- ik1X and integrating we find: 

- Ao VI + Al (E - T 1) = 0 
Here: 

and: 

(21) 

(22) 

(23) 

(the free-electron kinetic energies corresponding to the values k and 
k 1): 

------- -
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1,' 1 fa 'K r 1 =- V(x)e l IXdx 
a, 0 

i.e., the Fourier component of the potential with period l /a. 
To find E, we must eliminate Ao and Al from equations (22) and 

(23). In this way. we obtain: 

(24) 

which gh"es: 

(25) 

The resultant E-k cur,e is plotted in Fig. 7; it is of the familiar 
form with energy gaps whenever the wavenumber of the electron 
coincides with, or is a multiple of, the periodicity of the reciprocal 
lattice. When k= k1 so that To = Tv it follows from equation (25) that: 

(26) 

t I llE 

E 

-rrlo k--

FIG. i. E - k relation for nearly·free·electrons, 

This sl'e('ifieil thc ran~e of forbidd.en \'alues of E and. the width of the 
energy gap is thus: 

(2i) 

Consequently the cnergy gap is determined by twice the corresponding 
Fourier component of the potential. 
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The above reasoning is easily generalized to three dimensions. The 
critical values of k arc then those on the walls of the Brillouin zone. 
H k is close to a (111) face (in, say, an f.c.c. metal) then the Fourier 
component Vll1 will be important. At the centre of this face this com
ponent may suffice to determine the energy gap. Along the edge of a 
zone where two faces meet (say the III and 200 zone faces of an f.c.c. 
metal) then V1ll and V~oo may become important. At a corner, three 
Fourier components may be required. This illustrates how the Fou
rier components of the potential enter into the band-structure calcu
lations. ill addition we may note for future reference that in the 
neighbourhood of a zone face we may expect that at least two plane 
waves will be needed to specify the wave function of the electron, viz.: 

where Kg is the reciprocal lattice vector associated with that zone face. 
All this is, of course, well known. \Vhat is new is its justification by 

pseudo-potential theory in relation to at least some real metals. 
The method is particularly useful for constructing a Fermi surface 

from de Haas-van Alphen data. Where the model is most useful is, 
as we have seen, where only a few Fourier components of the pseudo
potential are significant. These (together with the Fermi energy) can 
then be taken as parameters and chosen to give the best fit with experi
ment in certain regiOlls of the Fermi surface. Then the model can be 
used to calculate the rest of the Fermi surface and the band structure 
of the metal in the neighbourhood of Fermi energy. This phenomeuo
logical programme has, for example, been successfully carried out for 
Pb by Anderson ~Ll1d Gold (1965) (where, however, the situation is 
complicated by the strong spin-orbit coupling) and for Al by Ashcroft 
(1963). 

The derivation of the Fermi suriiwe, expressed in terms of a few 
Fourier coefficients of the effectiye potential, does not by itself enablc 
us to predict what would happen to the surface under pressure. These 
Fourier coefficients, Vill and V200 ' say, are valid for one particular 
value of the Fermi energy, and hence for one particular ya.lue of the 
lattice parameter only (that corresponding to zero pressure). To make 
any predictions about pl'ef'sure effects. we need to know how V1Uo 

V200 and E F cha.nge whcll the Iattieo parameter alters, thus changing. 
among other things, the I'elative separations of the reciprocal lattice 

- - .-
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points. We must therefore extend the model; this has been done by 
Harrison and others and we now consider this extension. 

So far we have seen that if there exists a weak pseudo-potential that 
can be treated by perturbation theory we have a valuable phenomeno
logical method for interpolation and for correlating experimental data 
about the Fermi surface. ~()w, however, we would like to know 
something about this potential from a rather more fundamental point of 
view. In particular, we want to know how to calculate the Fourier 
components of the potential or, more generally, its matrix elements 
between plane wave states. In this outline, we follow Harrison (1965, 
1966). 

We begin by assuming that' there exists in the crystal a ·weak local 
effective (or pseudo) potential, TV(r) , at each point. We then assume 
that this total pseudo-potential can be represented as the linear super
position of the individual ionic pseudopotentials centred on the ion 
sites. Thus: 

W(r) = 1; te(1 r - rj D (28) 
J 

where the rj represent the positions of the ){ ions in the crystal, j 
going from 1 to N. This is a most important assumption and we shall 
discuss it below when we consider in more detail the nature of W 
itself. For the present, however, the point is that if this linear super
position holds then the matrix element of lV(r) (between states k and 
k + q) can be expressed as a product of two factors thus: 

W(q) = S(q) w(k, q) (29) 
where: 

w(k, q) = _1-J~ e-i(k+q)r 1O(r) e ikr d-r 
Vo 

is the matrix element of U'(r) between plane wave states k and k + q. 
w(k, q) is called the form factor; it is independent of the positions of 
the ions and depends only on the ionic pseudo-potential. Vo is here 
the atomic volume. 

If w(r) is a simple potential then the k dependence in the two ex
ponential factors in 1O(k, q) cancels out and w(q) is in this case just the 
Fourier transform of 1O(r). For our present purposes this simpler form 
is sufficient. 

1 . 
The factor S(q) = N ~ e-Wj is ('aIled the structure factor; by eon-

trast with w(k, q), it depends only on the positions of the lOllS. For a 
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perfect lattice at the absolute zero, it va,nishes everywhere exe-ept at 
the reciprocal lattice points where it has the value unity . 

This factorization into a 8truct~tre factor anda form factor, cha,racter
istic of diffraction theory, is vital here. 

\Ve turn now to the calculation of the effect of volume on the Fermi 
surface. One way to obtain such information is to make a calculation 
using the full pseudo-potential theory, essentially a full orthogonalized 
plane wave (OPW) calculation, at two different volumes. Howe,er, 
there are simpler, through of course less exact, methods; one is to use 
Harrison's "point ion" approximation. In this, w(q) is derived by 
representing the effective potential as made up of three contributions: 

(1) The coulomb potential due to the valence charge on the ion. 
(2) A repulsive term (originally referred to as the pseudo-potential) 

arising from the core electrons. As ah'eady discussed, the con
ductioll electrons are to some extent excluded from the core 
because of the Pauli principle and because these inner shells are 
already occupied. 

(3) The potential due to screening by the conduction electrons. Be
cause the conduction electrons in the metal are mobile the~ 
move to regions of low potential and thus partly screen the bare 
potential that the electrons would otherwise see; thus a self
consistent procedure is required. Such a procedure was intro
duced by Bardeen (1937) in his work on electron-phonon inter
action in metals. For a free, degenerate electron gas of Fermi 
radius, lc F , the screening can be represented by an effective 
dielectric constant of which the Fourier component of wave
number q is: 

(30) 

where 'YJ = q/2kF • Here m and e are the mass and charge of the 
electron. Under these conditions, the ratio of Wb (q), the bare 
potential, to Ws (q), the self-consistent screened potential, is just 
e(q). It is in part the simplicity of this self-consistent screening 
that makes it possible to represent the total crystal potential 
as the lillea,r superposition of the individual ion potentials. 

In the point ion model, the repulsive potential in (2) abuve is repre
sented by a 15 function (the ion core is considered as a point). If the 
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strength of the b function is p then the form factor can be represented 
b~' : 

w( q) = _..c..( 4_n_:_e-'..2 jq.:....2_) _+....:P_ 
VO e(q) 

where Vo i~ the atomic volume. 

0'3 

0'2 

0'1 

0 z·o . 
~ .. 0·' .., .., 
~ 
E 0'2 
~ 
""i 

0-3 
b 
~ 

0-4 

0-7"'------------' 

(31) 

FIG. 8. Form factors for AI at normal volume and for lattice spaciO:g r educed 
by 10%; the points are computed from the full pseudo·potential theory, and tba 
curves corre"pond to results caleulatf'd from the model form factor. (From Harri· 
son, 1905.) 

An illustration of such a form factOl' is given in Fig. 8. This is as 
ca.lculated by Harrison [or Al at two different atomic volumes, the 
normal volume and that corresponding to a 10% reduction in lattice 

. parameter. In the :Figure the points have been calculated from the 
full pseudo-potential theory whereas the lines are deriyed from the 
simplified form factor expressed in equation (31). In the second deri
\"'<ttion both -: (= 3 foJ' AI) and p are constant . The parameters that 
change with pressure are Vo, kF and hence e(q). Thus apart from the 
volume itself the only c\Htnge is in kF' in the Fermi encrgy and hem'e 
in the screening. 

'Ve shall see below to what extent this simplified model, the point 
ion model. is successful in accounting for the efff'cts of pressure on the 
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Fermi surfaee of the simpler metal". The general procedure is to choose 
a model form factor (e.g., of the Harrison type) and choose the param
eters in,oh-ed in it so that this form factor will reproduce what is 
known experimentally about the Fermi surface of the metal at normal 
pressure. As an example, u·(q) for Al would have to take on the values 
V I11 and V200 (as calculated by Ashcroft, say) when q is equal in 
magnitude to the corresponding reciprocal lattice ,ectors. Then the 
new form factor corresponding to a diffcrent volume can be deduced 
from the original one by suitably changing kF and hence the values 
of e(q). 

Alternath-ely, the experimental results can be used to calculate 
how the important Fourier components of the pseudo-potential vary 
with volume. These values may then be compared with theoretical 
expectations. 

In using a simplified version of the form factor, it should be re
membered that because it has been chosen to fit the Fermi surface at a 
particular ,olume, this does 110t guarantee that it will be successful 
at a different volume even when the screening has been suitably alter
ed. The simplified version of the form factor may contain unphysical 
assumptions that are concealed by the initial choice of parameters. The 
physically reasonable extrapolation to a different volume may then 
break down. 

In what follows we shall compare theory and experiment for the 
metals _-\'1, Pb and Zn. In this we shall essentially be considering to what 
extent a simplified form factor is successful in explaining the pressure 
dependence of certain features of their Fermi surfaces. \Ve consider 
each of the metal" in turn. 

D. COl\lP_-\RISOX OF THEORY WITH EXPEl{DIENT 

1. Penni Surface of Alunder Pressure 

By way of illustration of the methods outlined above, let us COll

sider first the Fermi surface of AI. The measurements by .Melz (196Gb) 
have already been refelTed to and ,ye refer now to his calculations. 
These calculations were based generally on the calcula,tions of the Fer
mi surface of Al made by Ashcroft (HlG3) which wa" itself an exten
sion of earlier wOI·k by Harrison (1\);')9 , HHiO). 
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Following )Ielz, we concentrate our attention on the y cross-section 
whose position is indicated-in Fig. 9(a). It is the extremal orbit around 
the point U whose position in the Brillouin zone is illustrated in Fig. 
9(b). In order to understand what happens to the area of this cross
section when the metal is compressed, we must look at the E-k 

y 

FIG. 9. (s). Part of the 3rd zone Fermi surface of Al. (From ?lIelz, 1966b.) (b). 
First Brillouin zone of the f.c.c. structure showing labelling of some symmetry 
points. 

curves in the neighbourhood of the point U. The general form of the 
E-k curves of AI in the specified symmetry directions as calculated 
by Ashcroft (1963) is illustrated in Fig. 10. The general form of these 
curves is quite similar to that for free electrons but with certain 
degeneracies removed by the effect of the weak pseudo-potential. 

The inset of Fig. 10 shows the region around U and our attention 
is focussed on the highest of the 3 bands (U 3); in particular on whether 
this intersects thc Fermi le,e1. The Fermi level is also indicated in the 
diagram. 

The y oscillations are measured with the applied magnetic field in 
the [UO] direction and two points on the corresponding extremal 
cross-section are indicated by A and B (Fig. 10). On going from U 
towards r (the centre of the zone) the E-k curve reaches the Fcrmi 
level at A and on goi 1 '~ from U towards :x (the centre of the square 
zone face) the E-k curve reaches the Fermi level at B. 

The energy of the third band at L is giyen by: 
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E - T + 1 { T,T + (1,'~ .L 8 1'~ )~l u. - u - "200 v IOO I t III -J 
2 

(32) 

where Tu is the free-electron kinetic energy at U. The coefficients 
V200 and VU1 ha\'e been referred to above; they may be thought of as 
Fourier components of the lattice pseudo-potential or as matrix ele-

2'5 

2'0 

. 1'0 

0-5 Tawardsr U Towards X 
k k 

x W k U X 

FIG. 10. Calculated band structure of Al (fro~: Ashcroft, 1963). E-k curves 
in the neighbourhood of the point U. 

ments of the pseudo-potential taken between 2 orthogonaIized plane 
waves differing by the reciprocal lattice vectors (200) and (111), re
spectively. V200 and Vlll are positive. Moreover, Harrison (1965) 
has estimated that the pseudo-potential coefficients for Al should in
crease when the metal is compressed. Consequently, Bu. would in
crease further above the free-electron value. Of course, both the free
electron kinetic energy and the Fermi energy would increase on com
pression, but these changes are small compared to the change in EU

3 

(i.e., the energy splitting due to the pseudo-potential). The final re
sult is that the whole third band is raised with respect to the Fermi 
energy and so, provided that the band retains its shape, the Fermi 
surface cross-section, y (measured by the distance A-B in Fig. 10), 
will decrease under pressure. 

To make a quantitative calculation of this effect, Harrison's model 
can be used in the manner indicated above to calculate the changes in 
the pseudo-potential due to pressure. 

Melz carried out these calculatiolls and found that a higher-order 
correction, arising from the next two higher energy levels, has a signif
icant effect on the result. This higher-order effect can be put in mthout 
introducing new parameters. His results are shown in Fig. 11, and can be 

:e4 Ck 
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compared with experiments. The Figure shows a comparison between 
the results (a) of the effectively free electron model (b) of the three 
OPW calculation without the higher order corrections and (c) of the 
three OPW calculations with higher-order corrections. The agreement 
of the latter with experiments is very good although the extreme 

:~ . . 
~: 

6 

Pres,;ure (kb) 

FlO. 11. The pressure de pendence of the )/·[110] cross·section in AI. The points 
are the experimental results (two diffe rent samples). The lines represent theoreti
cal calculations: A, simple scaling of the Fermi surfaee; B, calculation based on 3 
OPW Ashcroft pseudo·potential; C, 5 OPW calculation. (From :'I[eb:, 1966b.) 

closeness is a.lmost certainly fortuitous. For our present purposes, 
however, the point is that this sort of calculation can expla.in some of 
the features of the pressure dependence of the Fermi surface of AI. 

lIelz made further comparisons between experiment and theory. 
although the other cross-sections do not lend themselves so rea.dily 
to theoretical comparison. 

2. Fermi Sur/ace of Pb under Pressure 

Anderson et al.(196/} measured the effect of pressure on some extrem
al cross-sections of the Fermi surface of Pb and used their results to 
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estimate the Yariatiolls with pressure of the appropriate :Fourier coef
ficients of the pseudo-potential. They found also that model potential 
calculations correctly predicted the signs in the changes of VU1 and 
V200 with pressure, although the magnitudes were "'Tong by a fa.ctor 
of 5 or so. The:- concluded that calculations using more exact forms for 
the potential were needed to make a satisfactory comparison between 
theory and experiment. 

3. Effect of Pressure on the Fermi Surface of Zn 

As already mentioned, O'SulliYan and Schirber improved their esti
mates of the pressure dependence of their S2 cross-section by using a 
three-OP\\' calculation based on a model potential rather like Harri
son's calculations on AI. Their model potential did not altogether agree 
with deductions made from de Haas- van Alphen data of the Fermi 
surface under zero pressure. They assumed, however, that it might 
yield reasonable derivatives for the purpose of calculating pressure 
coefficients. Their results agreed within a factor of 2 with their ex
periments. 

There haye recently been further measurements of In and Be and 
in general it appears that the pseUdo-potential theory in its simpler 
forms can giye at least a qualitative account of the pressure effects. 

4. The .J! onomlent ]f etals 

Considerable experimental work on the properties of the noble me-__ 
tals under pressure at low temperatures has been done, and so we 
shall first look at the effect of pressure on the Fermi surface of these 
metals before turning to the alkali metals. 

5. Experiments on the Noble ~Metal8 

The shape of the Fermi surfaces of the noble metals is now well 
established by a wide range of experimental techniques (see for 
example Shoenberg, 1962, and Roaf, 1962). 

The shape of the Fermi surface of a noble metal together with the 
first Brillouin zone is illustrated in Fig. 12. This shows that the Fermi 
surfaces of the noble metals touch the Brillouin zone boundaries on 
the hexagonal {Ill} zone faces. The area of contact increases in the 
sequence Ag, Au, Cu. The Fermi surface of Ag thus departs least from 
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that of a sphere, but in all of them, because of the contact with the 
zone boundary, the surfaces in the repeated zone scheme are multiply 
connected. 

\Yhere the :Fermi surface contacts the zone boundary is usually 
referred to as the neck region; regions away from the necks are usually 

FIG. 12. First Brillouin zone and Fermi surface of a noble metal (schematic). 
The extremal belly and neck orbits with the magnetic field in the [1111 direction 
are shown. 

referred to (following Shoenberg) as the bellies. As we shall see below 
there are important regions, particularly in gold, where the surface 
is significantly concave in the tllO] direction. 

The first experiments seeking to find out how the Fermi surfaces 
of the noble metals changed under pressure were those of Caroline 
and Schirber (1963) who measured the transverse magneto-resistance 
at high fields to pick out the regions associated with open orbits. In 
this way they could measure the angular diameter of the necks in the 
Fermi surfaces of copper and silver from the angular separation of the 
corresponding peaks in the transverse magneto-resistance; they were 
thus able to concentrate directly on distortion of the Fermi surface, 
since if the whole surface and Brillouin zone simply scale together 
under pressure, the angular diameter of the necks does not change. 
The method of applying pressure was by means of the helium gas 
technique and they used pressures up to 2 kb. Their precision waS such 
that they could detect changes of 0'2% per kb in Cu and 0'3% per 
kb in Ag. Xo changes were detected. 

p 
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As we saw above, Shoenberg and Stiles (1964) introduced the modu
lation technique for measuring de Haas-van Alphen signals in conjunc
tion with the use of a superconductillg magnet to produce the magnetic 
field. In applying this method to determine the Fermi surfaces of the 
alkali metals they used a fixed field and rotated the specimen; in this 
way the signals measure directly departures of the surface from spheric
ity, thereby providing a ,er:v direct and sensitive technique for metals 
with nearly spherical Fermi surfaces. A further development came with 
the application of the method to determining how tension alters the 
Fermi surfaces of the noble metals (Shoenberg and \-ratts, -1965). 
In this work the strains in,olved were very small (10- 3 or 10-·, to 
remain within the elastic limit). The authors achieved a hiO'h enouO'h o 0 

sensitivity to measure the changes in cross-section of the Fermi surface 
by observing changes in the phase of the oscillation in a fixed field of 
about 50 kg. At this field the phase of the belly oscillations is about 
10· and of the neck oscillations about 5 X 102• Their apparatus was 
sensitive enough to detect a change of phase of about 1/10 of an oscilla
tion, thereby making possible a sensitivity and accuracy of about 1 
part in 105 for the belly and 1 part in 5 X 103 for the neck oscillations, 

The application of this method to measurements of the effect of 
pressure on the Fermi surface "'as made by Templeton (1966). He 
again used the sensitivit:v that comes from observing a phase change 
in a fixed field. In his apparatus he achieved a sensitivity of about 1 
part in 107 for the belly oscillations. To measure distortions of the Fermi 
surface he compared directly the relative phase of belly and neck 
oscillations from the [111] (lirection. Because of the hirth sensitivitv o • 

of the method, Templeton could use the hydrostatic pressure (up to 
about 25 atm) available ,,-jth liquid helium at 1'20 K. Figures 13 

and 14 illustrate the two aspects of this work. In Fig. 13 we see a 
sequence of steps tha.t record the cha.nge in phase of the belly oscil
lations in gold in a persistent field of 50 kg. Each step corresponds to 
an increase or decrease of the pressure by about 3'5 b. Between each 
step the limits of the partie-ular de Haas-van Alphen cycle have been 
checked by slightly pertmbing the magnetic field (without, howe"er, 
permanently changing the persistent current). The results obtained 
in this way were not entireh' satisfactorv, because to calibrate the - -
changes in phase in terms of the change in area. of orbit requires the 
assumption that the susceptibility oscillations are truly sinusoidal. 
A null method was therefOl'c used in which the phase shift produced 

10 II.P.H. 
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FIG. 13. Phase changes in the flll] belly oscillations of Au due to pressure 
clanges. The applied field is about 50 kG. (From Templeton, ] 966.) 

32-3 32-4 32-5 32-6 

Applied field (kG) 

FIG. 14. ~eck and belly oscillations in the [111] direction in the de Haas-van 
Alphen effect in Au Itt three different pressures. The arrows indicate corresponding 
belly oscillations and show thf> relative phase change with pressure. (From Tem
pleton, 1966.) 
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by the change of pressure was just offset by a suitable change in a 
supplementary source of magnetic field. The phase shift could then 
be calculated from the required field change . 

In Fig. 14 we see how in Templeton's method the relative phase of 
belly and neck oscillations is compared at different pressures. In these 
measurements there is no change of phase with pressure as long as 
different parts of the Fermi surface just scale in the same proportion. 
The method thus detects rlirectly distortion of the Fermi surface with 
pressure. In the Figure, the high-frequency oscillations arise from the 
belly and the low frequency oscillations from the necks. The arrows 
indicate one particular belly cycle; to follow its position without am
biguity it is necessary to make measurements at smaller pressure 
intervals than those illustrated in the Figure. 

Once the relative phase change between the belly and neck oscilla
tions has been determined, we ca·n then find the relative changes in 
area as follows. The cross-sectional areas An of the allowed orbits of 
the electrons in a field H are given by: 

An = 2n(n + y) eH11i (33) 

where y is a phase factor that we assume remains constant and 11, is an 
integer. Now let N Nand N B be the corresponding values of 11, + y 
for the neck and belly oscillations, respectively, at a given value of 
H: 

Therefore: 

(34) 

where A N and A B are the cross-sectional areas of the extremal neck 
and belly orbits. 

Consequently if we fix on a given neck orbit and so keep N N con
stant but allow A N and A B to change because of the pressure, the 
change in N B is given by: 

__ J_N_-_B = JAN _ JAB 

AN As 
(35) 

It is clear from this result that if the two orbits scale in the snme 
jAr-: JAB 

proportion -- = -- ctnd .1 N B = o. From the experiment on 
AN As 

10* 
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the belly oscillations alone A AE/Ab can be measured rather accu
JAN 

ratelv, and so from the experiment that measures AN B, -- can be . AN 
accurately derh-ed. Alternatively the relati\-e change of cross-section 
(LJ A/A)N - (LJ A /A)B may itself be the quantity desired. 

Templeton's results for the three noble metals are summarized in 
Table III. They show that this provides a very accurate way of meas-

TABLE III. Change of anisotropy and Fermi surface with pressure 

Change in 

a In !!ph elastic Distortion of 
}Ietal a In V Y 

dl,nK anisotropy Fermi surface 
(00 C) 

d In V with pressure ,,;th pressure 
((dlnA))t 

(d In V) -

Li -0·49 0-9 -2·3 -0·4 
Na 4'0 1·3 2·0 0 
K 5-6 1-3 3·0 0 Small 
Rb 4·3 }·o 2·3 
Cs 3·1 1·0 1-1 

[ d In rN ] d - t":j: d In V lstor _IOn 

Cu 3·0 2·0 -1·0 -0·87 -1·1±0·2 
Ag 3·9 2·4 -0·9 -0-84 -2'I±O-2 
Au 5·5 3·1 -0·7 -2·1 -1'5±0-2 

t A is the anisotropy parameter 2 C .• ,/(C Il -C12 )-

:j: This moasures the distortion effect only; scaling effects have been subtracted. 

uring essentially the pressure deri'mti'l.·e of the different cross-sections 
at P = O. In all three metals, pressure increases the area of contact 
at the zone boundaries, i.e. , enhances the distortion of the Fermi 
surface. Since this was written further experimental work has been 
done on copper; see O'Sullivan and Schirber (1968) , and Gerhardt 
(1968) . . 

6. Experiments on the Alkali J.l1etals 

So far Templeton has made measurements 011 K under the pres~ure!' 
available with liquid helium. He has measured the relative change in 
area of orbits on sc\'eral different and ra.ndomly oriented cry. tal. . 
The chan~es correspond , within experimental error, to those to be 
expected from simple scaling of the Fermi surface to the relative 
change ill the size of the unit cell. 
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7. Effect 0/ Pre8~JUre on the Fermi Sur/aces 0/ the AJonomlent Metals: 
Theory 

The theoretical situation is very much the inverse of the experi
mental one. Detailed calculations of the effect of pressure on the band 
structure of the alkali metals have been made by Ham (1962); on the 
other hand very little work has been done on pressure effects in the 
noble metals altl:ough, of course, the band structure of eu at atmos
pheric pressure has been studied in detail (see, for example, Segall, 
1962. and Burdick, 1963). (But see added note on p. 141.) 

8. The Alkali Metals 

Ham's calculations were based on the quantum defect method in 
which the details of the electron -ion potential in the free state are fed 
into the calculation directly through the quantum defect parameters 
which characterize the atomic spectra of the elements. The main 
purpose of the calculations was to illustrate the trend in the band 
structures in going through the alkali metal series. This purpose is 
particularly apposite in the present context because Ham's results 
can be compared, as we shall see in the next Section, with experimental 
results on electrical resistivity for all the alkali metals and also with 
the outcome of some of the theoretical calculations of resistivity in 
the same group of metals. 

The results of Ham's calculations are yery detailed: they give the 
shapes of the Fermi surfaces, the electron velocities, density of states, 
indeed all the band structure information not only at atmospheric 
pressure but over a wide range of volumes. 

It is not yet possible to compare Ham's predictions about the in
fluence of pressure on the Fermi surface of the alkali metals directly 
with experiment, but it is possible to test hiR predictions about the 
shape of the Fermi surfaces at atm08pheric pressure, since these (ex
cept for Li) are now well established experimentally (Shoen berg and 
Stiles, 1%4; Okumura and Templeton, 1965). 

This comparison shows that Ham's calculations consistently ovcr
estimate the distortions of the Fermi surface except in Na. In Na. 
Ham predicted, and experiment has since confirmed, that the Fermi 
surface is very nearly spherical. In goillg towards the heavier metals 
the distortion, a.ccording to Ham, should be increased in the sequence 
K, Rb, Cs. In Cs, the distortion should be so great that the Fermi sur-

• 'W, 
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face should be nearly touching the zone boundaries. Likewise in Li, 
distortion of the Fermi surface would be large and comparable to that 
in Cs. The experiments have shown that in K the Fermi surface is 
slightly more distorted than in Na though still ,ery close to a sphere; 
the radial distortion is about 1 in 103• In Rb. the distortion amounts 
to about 1 % in radius and in Cs (Okumura and Templeton, 1965) to 
only about 5%. In lithium (Stewart et al., 1964) the Fermi surface is 
known only from positron-annihilation e:\:periments; these indicate a 
radial distortion, as in Cs, of about 5%. We see, therefore, that the 
calculations give the right trend of distortion among the alkali metals, 
although numerically the agreement is not too close. One might , there
fore, expect a similar result for the pressure dependence: i.e., that 
Ham's predictions would be qualitatiyely correct, but might over
estimate the eff~cts. This would imply that the Fermi surfaces of Li 
and Cs would be particularly susceptible to change under pressure. 
So far, however, no experimental e,idence on these two metals is 
available. As we shall see below, however, Ham's calculations have 
been used with some success to calculate changes of resistivity under 
pressure. 

9. The Noble Metals: Theory 

Segall's calculations of the Fermi surface of Cu at atmospheric 
pressure illustrated the importance of the low-lying fully occupied 
d band on the shape of the Fermi surface. Segall emphasized that the 
interaction bet ween the d levels and the sp energy bands depends on 
the symmetry direction under considemtion. It is particularly strong 
in the [110] directions. Where this interaction can occur its effect is illus
trated in Fig. 15. From this Figure it is clear that if the Fermi le,ellies 
above the general average energy associated with the d levels, the effect 
ofthis interaction is to push the E-/.; curye of the 8 like electrons in 
towards the origin. This means that compared to the free electron 
sphere, the true Fermi surface of the noble metals tends to be pushed 
in in the [110] directions. Such concaye areas around the [110] direc
tions are indeed found; they are particularly conspicuous in Au 
and Cu. Since in the monovalent metals, one electron per unit cell has 
to be accommoda.ted within the Fermi surface. this inward bulging 
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. implies that the surface must bulge out in some other directions. 
Because of the energy gap at the [Ill] zone faces <:l,nd because these 
faces lie close to the undistorted Fermi sphere, the Fermi surface tends 
to bulge towards these faces. This, together with the [110] conca
vities, forces the Fermi surface actually to contact these [111] zone 
faces. It is significunt that the area of contact is greatest in Cu, which 
has the highest d levels, next greatest in Au and least in Ag, which 
has the lowest lying d levels . . 

s band 

i4~ ____ ~~~~~~ 
E 

FIG. 15. The effcct of in teraction between 8 and d bands (schematic). 

On this basis one may conjecture that the influence of pressure on 
the Fermi surface ofthe noble metals will make itselffelt most strongly 
through the d electrons. On compressing the metal, the d bands would 
be expected to broaden in energy, and their mean energy to rise. t 
This will increase the effects of the interactions between 8p like and 
d like energy bands, which in tUnl would exaggerate the distortion 
already referred to. Consequently one would expect that pressure 
would increase the areas of contuct in the [Ill] directions and enhance 
the concave areus in the [110] directions. The experimental results of 
Templeton show that, ut leust us far as [Ill] directions are concerned, 
these ideas correspond with what, is found experimentally. There have 
recently appeared some calcula.tions of the effect of volume change 
on the Fermi surface of copper by Davis et al. (1968). 

t A rough argument is a.~ follolvs. Compressing the metal increases thc overlap 
of the original atomic d orbitals. Consequontly the d band will broaden on com· 
pression. A rise in the a\'erage band energy may be attributed to the increase on 
compression of the exponentially varying repulsion between the closed shells. 

... 
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IV. EFFECT OF PRESSURE OX ELECTRICAL CONDUCTI\-ITY 

\Ve turn now to the problem of understanding how the electrical 
conductivity of a metal varies with pressure_ "Ve shall be concerned 
almost exclusively ",ith the monovalent metals, i .e., the alkali metals 
on the one hand and the noble metals on the other. On the other hand, 
there have been recent important theoretical developments relating 
to the divalent metals (Vas'niri and Heine, 1967; Vasvari et al., 1967) 

stimulated largely by the experimental findings of Drickamer and 
co-workers (Stager and Drickamer, 1963; Dl'ickamer 1965 ; see also 
the reviews by Lawson, 1956; Paul, 1963; and Landwehr, 1965). 

A. PHO::-<OX-SCATTERING PROCESSES 

As a preliminary, let us consider briefly some of the mechanisms 
that give rise to electrical resistivity in metals. The electric current is 
carried by the conduction electrons, of which in the monovalent metals 
there are just one per atom. These electrons form a highly degenerate 
electron gas whose Fermi energy can be estimated on the assumption 
that the conduction electrons form a free-electron gas confined within 
the volume of a metal. The Fermi energy therefore depends on the 
atomic volume of the metal and yaries from about 80,000° K in eu 
to about 20,000° Kin Cs (both at normal pressure). We see therefore 
that even at room temperature the zero-point kinetic energy of the 
electrons is very large compared with a· typical thermal energy kT. 

At the absolute zero oftemperature in a perfect lattice (i.e., a lattice 
free from physical or chemical imperfections) the conduction electrons 
may be thought of as waves propagating in n. perfect periodic structure. 
Consequently they can travel without being scattered, and the metal 
would therefore have zero resisti>'ity (this is not to be confused with 
the superconducting state which has quite different and distinct prop
erties). 

All real metals have some impurities or physical imperfections, in
eluding boundaries, that limit the conductivity of the metal in its 
non-superconducting state. The resistivity that remains at the lowest 
temperatures and is indepcndent of tempcrature is called the residual 
resistivity, eo . For very pure perfect metals, it can be made a very 
small fraction of the room-temperature resistivity; typically. in such 
pure metals, the ratio of room temperature to residual rcsisth'ity 
may be 104 or more. 

Pi , ·c. ;;ae W 
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The periodicity of the ideal lattice thus explains the YHnishing of 
resistance in pure, perfect metals as the absolute zero is approached. 
The success of the picture in this respect has tended to focus attention 
on the periodic structure of metals even when their electrical conductiv
ity at high temperatures is under consideration. As we shall see below, 
this is in some ways a mistaken approach and for high-temperature 
purposes this emphasis on the periodic lattice is not necessarily the 
most helpful. 

In addition to the electrical resistivity that arises from the scatter
ing of the conduction electrons by chemical impurities and physical 
imperfections there is also, at any temperature above the absolute 
zero, scattering due to the thermal vibrations of the lattice, i.e., to 
phonons. It is this scattering by phonons that gi,es rise to the tempe
rature-dependent part of the electrical resistivity Qph. As a first 
approximation we assume that the total electrical resistivity, e, at 
any temperature is given by: 

e = eph + eo (36) 

This is known as ~fattheissen's rule , and although a valuable generali
zation it is not strictly valid, and as we shall see below it can, in cer
tain circumstances, give misleading information. 

\Ve turn now to a more detailed discussion of the scattering of 
electrons by phonons. Suppose that an electron of wavenumber k and 
energy Ek is scattered by absorbiug a phonon of wavenumber, q, 
frequency wand energy trw into a state k" of energy E k •• Conservation 
of energy then requires that: 

Ek • - Ek = trw (37) 

We also require that: 
k' -k=q+ G (38) 

where G is a reciprocal lattice vector. This relationship is in some way 
analogous to consern1tion of momentum. \Vhen G is zero, we have a 
socalled normal process and when G is non-zero we have an Umklapp 
process. The Umkhpp process (U-process, for short) can be interpreted 
in the following wa.y. If k' - k = G, this means that the electron 
satisfies the Bragg condition for reflection from the lattice planes 
corresponding to the reciprocalla.ttice vector G; consequently, we may 
think of the scattering process, describcd by the process above, as 
implying that the electron is scattered by a phonon of wUYellumber q 
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and at the same time Bragg-reflected by the appropriate lattice 
planes. 

U-pro('esses are ,ery important because they provide a means by 
which the momentum in the electron system can be communicated 
directly to the lattice as a whole. They therefore provide an immediate 
source of electrical resistivity. They are also important because G is 
a large vector and therefore even when q is small, u-processes make 
possible large angle scattering processes. This is particularly important 
at low temperatures (Bailyn, 1960). 

FIG. 16. Xormal scattering process. FIG. 17. Umklapp process. 

The conseryation of energy condition (equation 37) severely limits 
the possible scattering processes. This is because ftw' (which is of order 
kT for T < fJ and of order kfJ at higher temperatures) is so small 
compared to Ek that a phonon cannot significantly change the electron 
energy. }Ioreo,er since, at normal temperatures, kT itself is very 
small compared to E F , there are unoccupied electron states only very 
close to the Fermi level; this in turn means that because of the Pauli 
principle only electrons close to the Fermi level (effectively on the 
Fermi surface) can be scattered and then only into other states (which 
must of course be unoccupied) that are themselves on the Fermi sur
face. This condition of scattering only from and to states on the Fermi 
surface is observed in all subsequent discussions and illustrations of 
scattering processes. (It applies, of course, equally to impurity scatter
ing.) 

In Figs. 16 and 17 a normal scattering process (or N-process) and a 
U-process are illustrated. In the example show11, the Fermi surface 
corresponds to a spherical surface and the Brillouin zone is shown as 
square for simplicity. The important point is that the Fermi surface 
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does not touch the zone boundary and this corresponds to the case of 
the alkali metals at least at normal pressures. As we saw above, their 
Fermi surfaces are nearly spherical and do not touch the zone bounda
ries. (For the noble metals, however, the Fermi surfaces do touch the 
zone boundaries and the distinction between N- and U-processes is 
no longer useful.) 

FIG. IS. A U·process in the repeated zone scheme showing minimum q vector 
for aU-process. 

It is seen from Fig. 18 that when the Fermi surface does not touch 
the zone boundaries, there is a minimum value of q required to induce 
a U-process. Let us suppose that qmin is this minimum value in a partic
ular direction and that w is the corresponding frequency of the pho
non propagating in this direction. Then at low temperatures the nUnl-

A", 
bel' of such phonons excited is proportional to e - kT. If c is the phonon 
velocity, this probability may be re-written in terms of qmin as 

ACIlmin 
e--kT-. Clearly, therefore, under these circumstances, U-processes 
must die out at sufficiently low temperatures. On the other hand, their 
importance may persist down to quite low temperatures, if in some 
directions c is particularly small and qmin not too large. Bailyn has 
shown that this is true in the alkali metals. These metals are very 
strongly anisotropic in their elastic properties and in certain directions 
there are low-lying transverse modes of vibration which can cause 
U-processes down to quite low temperatures. Moreover, because they 
almost reverse the electron momentum, these processes dominate the 
resistivity throughout the temperature region in which eph is still 
measurable (at the lowest temperatures eph is lost in the background 
of residual scattering). 
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The above expression for the probability of exciting a phonon which 
can induce an U-scattering process shows that the electrical resistivity 
at low temperatures is determined not only by the geometry of the 
Fermi surface (which determines the ,alue of qrnin in any direction) 
but also by the elastic anisotropy of the crystal (which determines the 
value of c in any direction) . 

To understand the yariation with pressure of electrical resistivity 
at low temperatures, therefore requires that we know both how the 
Fermi surface changes under pressure and how the elastic anisotropy 
changes under pressure. In addition to all this we must also know how 
the matrix elements for the electron phonon interaction change with 
pressure. Some of this information is, as we have seen, now available 
directly from experim('nt, but not all; a summary ofthe present situa
tion is given in Table III. 

B . TEMPERATURE AND PRESSURE DEPE::-;-DE~CE OF RESISTIVITY 

A'l' VERY LOW TEMPERATURES 

At sufficiently low temperatures where the phonon wavelengths 
are large compared to the interatomic distance, the continuum model 
of a solid gives a good description of the elastic vibrations in real 
solids. In this temperature region, the number of phonons varies as 
T3. On the other hand the electrical resistivity due to these phonons 
varies more rapidly; theoretically in the simplest case, it is expected 
t o vary as T5. The reason for this is illustrated in Fig. 19 'which shows 
that if an electron, travelling in the direction of the electric current, 
is scattered by a phonon of wave vector q ttu'ough the angle rJ>, as 
indicated, its momentum in the direction of the current is reduced by 

rJ>'! 
(l-cosC/J). IfcJ>issmall,thisapproximatesto-. Now C/J ~ q/KF 

and the magnitude of q C( T. 2 
To determine how the resistivity depends on temperature, we must 

take into account how the temperature alters both the number of 
scatterers (the phonons) and the effectiveness of each scattering pro
cess (i.e., the change ill momentum induced) . Consequently there is a 
factor of T2 from this last effect in addition to the T3 that arises from 
the "Varia.tion ofthe Humber ofphonons with temperature. If, therefore, 
we are at low enough temperatures so that the U-processes are frozen 
out, it can be shown that: 

-
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(38) 

where () is the characteristic lattice temperature of the metal. If the 
volume of the metal is changed by pressure, () alters and this provides 
one important mechanism for the change in resistivity wit h pressure 
at low temperatures. 

FIG. 19. Small angle scatt-ering by phonons. 

C. EFFECT OF TEl\IPERATCRE .L~D PRESSURE ON ELECTRICAL 

RESISTIYITY .-tT HIGH TEMPERATURES 

At high temperatures, i.e .. T .<:. e, most of the phonons that are 
excited are of large q vector (typically about halft-he dimensions of the 
Brillouin zone) so that all collisions with phonons can prOduce a large 
change in the momentum of the conduction electrons. \Ve may there
fore expect that the electrical resistivity due to phonon scattering ~ill 
depend directly on the number ofphonons excited at a given teml)era
ture. Alternatively, looking at the problem in classical rather than · 
quantum terms, we may expect the resistivity due to the lattice vibra
tions to be proportional to the mean square amplitude of these vibra
tions. In either caRe we "Tite: 

(39) 

where 1.1/ is the ma.ss of the iOllS t hat make up the lattice and K is a 
parameter that involves all the complex interactions between the 
conduction electrons and the ions. 

If we compare equutions (38) and (30) \\"c see that at high tempera
tures Qph dcpcnus in \>ersely on O"! and at ,ery low temperatures in
versely on (i6. \Ye ulso known that, in general, 0 increu:;es with in-

-
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creased pressure.t Consequently we may expect a decrease of (lph with 
pressure due to the change in (J to be ,ery much bigger at low tem
peratures than at high (cf. Fig. 20, which illustra,tes this in the alkali 
metals). 
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FIG. 20. Pressure coefficient of electrical resistivity in the alkali metals as a 
fUDction of temperature. (From Dugdale and Phillips, 1966.) 

More generally we may write: 

flph = ~ t(TiO) 
T 

(40) 

where K has the same meaning as before aud t(T/(J) is some universal 
function that varies as T2j()2 at high temperatures and as T6j(}6 at low 
temperatures. Such a relationship is approximately true for several 
different metals and if we suppose that it is true for one metal under 
different pressures (with K and (J dependeut on pressure) then we 
can relate the volume dependence of Qph to its temperature dependence 
as follows (Dugdale, 1961; Dugdale and Gugan, 1962): 

a In flph = a In K + a In 0 (I + a In l!ph ) 

a In V a In r a In VaIn T 
(41) 

t This may be scen cruddy IlS follows. 8 c1l1l.racreriz{'s the vibrational frequen
cies (J) of the la ttice, and w2 in turn is proportional to the force constants, Le., tu 
the second derivatives of the atomic potential with respect to distance. The effect 
of pressure is to squeeze the potential w ell and hence to incrNLse its curvatur{', 
i.e., essentially the force constants. 
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In this expression we are treating K and 0 and hence their volume 
derivatives as independent of temperature. Consequently if the electri
cal resistivity follows a reduced equation of state of the form shown in 
equation (40), we expect a linear relationship between the logarithmic 
volume derivati,e of Qph and its logarithmic temperature derivative. 
This means that where the temperature dependence of eph changes 
rapidly with temperature the volume dependence will likewise change 
rapidly. 

12~-------------------------, 

10 

8 

2 

ll.Li 
o No 
vK 
oCu 

[ I+dln~ dInT j 
FIG. 21. Relationship between volume (!oefficient and temperature coefficient 

of resistivity. (From Dugdale, 1961.) 

. This relationship has been tested experimentally and the results are 
shown in Fig. 21 (Dugdale , 1961; Dugdale and Gugall, 1962). It is 
seen that a. relationship of this kind does indeed hold. On the other 
hand we saw that the low-temperature behavioUl' of the electrical 
resisth'ity dependerl on both the shape of the Fermi surface and on 
the elastic anisotropy in [1, way that did not allow them to be ~eparated 
in any simple fashion. This means tha.t fJ in equation (40) does llot 
describe simply the lattice properties of the metal and so the reduced 
equation of state does not a.llow the lattice properties to be simply 
·separated out from tlie electron properties as was originally hoped. 
The linea.r relationship in eqwLtion (41) is interestilJl' ami perhaps 
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useful , but not of any fundamental significance. It allows us to under
stand volume dependence at different temperatures in a phenomeno
logical way but does not give us any deep insight into the processes. 

D. CHANGE OF K WITH VOLUME 

I have emphasized that at least at low temperatures the electrical 
resistivity depends sensitively on the relative proportions of N- and 
U -processes. This in turn depends on both the geometry of the Fermi 
surface and the anisotropy of the phonon-dispersion curves. 

At high temperatures, however, where all scattering processes, "heth
er ~ or U, involve large-angle scattering, it is probably more legit
imate to separate out the dependence of the vibration amplitude (or 
the number of phonons) on volume from the other terms so that we 
can focus attention on the volume dependence of the electron-phonon 
interaction. 

At high temperatures equation (39) applies. If we allow the pressure 
to vary at constant temperature we have from this equation: 

8 In I?ph 

aln V 
8InK _ 2 8 In {) 

a In r 8 In V 

8 In {) 

(42) 

In this cXllression we can estimate from the Griineisen pararn-
8 In V 

eter; this in turn can be determined from purely equilibrium measure
ments on the metal since we have: 

- 8 In 018 In V = y = VfJixCv (43) 

where fJ is the volume expansion coefficient, X is the compressibility 
and Ov is the molar heat capacity at constant volume. 

In this way we can estimate the change of {) with volume, and so 
determine the change of K with volume; cf. Table III. Table IV 
gives the rcsults for the monovalent metals at 0° C. Our next problem 
is to understand the values of 0 In Kia In V listed ill the Table. Be
fore considering the theoretical work that has been done on this, there 
are threo further noints about the variation of K with yolumc that 
must be brought out. 
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TABLE IV. Values of a In K/a In V 

Experimental 

-2·!l 
1·9 
3·0 
2·3 
l-lt 

Hasegawa (1964) 

-3·7 
1·8 
1·9 

Theoretical 
(Dickey Itt al., 

1967) 

-1-1 
0'5 
1·3 
1-1 

-0·2 

151 

t There is considerable uncertainty in this value. A.ccording to Hasegawa (1964) 
some experimental values indicate it might be negative. 

1. Relationship with Thermoelectric Pou:er 

If the electrical resistivity of a metal arises from effectively elastic 
scattering (e.g., impurity scattering or scattering by phonons at high 
temperatures), the thermoelectric power may be expressed as: 

s= n
2 k2 T (a In a(E)) 
3e 8E E=E 

l' 

(44) 

(see, for example, )lott and Jones, 1936). 
This relationship expresses the fact that under these circumstances 

and neglecting phonon drag the thermoelectric power should be linearly 
proportional to the absolute temperature; this is found experimentally, 
at least in the region of T rv O. Moreover, the coefficient of proportion
ality should depend on the variation ofthe conductivity of the metal 
with the energy of the conduction electrons at the Fermi leveL If we 
introduce the Fermi energy, E F , measured from the bottom of the con
duction band, we may rewrite equation (44) as follows: 

n 2 k2 T 81n aCe) :r2 /.;2 T 
S = =; (44a) 

3e EF 8 In E 3e Ep 

In this way we can obtain from measured values of S, a value for the 
quantity ~, which tells us how the electrical conductivity varies with 
energy. 

It is then found that the quantity .; evaluated in this way for the 
monovalent metals is closely related to the high-temperature value of 
the vohtme dependence of the electrical conductivity (0 1na/a In V). 
If we eliminate from this volume dependence the change in the ampli-

11 H.P.R. 
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tude in the lattice vibrations (which has no counterpart in ;) we are 
left with the quantity a lnK/a In V. A comparison between this quan
tityand ; shows that the two are approximately proportional to each 
other. This is illustrated in Fig. 22. This figure shows not only the 
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FIG. 22. R elationship between volume coefficil'nt of K a nd thermoelectric 

power. Note that -; is plotted. (From Dugdale and )fundy, 1961.) 

vaJues of a InK/a In V and ~ for the metals under normal preSSure, but, 
for es, it shows values for the compressed metal. The approximate 
proportionality is still valid (Dugdale and ~Iundy, 1961). 

A possible interpretation of this relationship is as follows. Assume 
that the electrical conductivity a is a function only of the Fermi 
energy, E F • the Debye temperature of the lattice, e, and the temper
ature, T , i.e., we write a = a(EF' e, T); likewise the resisti,-ity !! = l/a 
depends on the same variables. Then : 

( 
8 In e ) ( 8 1n a " ( 8] n a) clJn EF + 

-. 8 In V T = 8 In V . T = 8 1n EF 6, T dIn V 

+ ( 
a ]n a) dIn () 

(45) 
81n e EF.T dIn r 

This equation can be reduced on the hasis of the following simpli
fying assumptions: 

II 

II 
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8 In a 
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(the Gri.ineisen parameter) 

at high temperatures (see equation 39 above) 

dIn EF 2 
---'- = - -- on the basis of the free-electron model or 
dIn V 3 

the effective mass approximation. 

Also: 

( 
8 In a 'J 

8 In Ef' 6 = ~ as defined in equation (45) 

. (8 In e ) _ 2 = ~ ~ 
··8In1' y 3 

The left-hand side of this equatio11 is just what we earlier denoted by 
a In x/a In V so that the relationship between this quantity and ~ is 
established. The coefficient of proportionality on this simple treatment 

2 
is just - , and this corresponds to the dashed line shown in Fig. 22. 

3 
The basis of this derivation is that (J depends on V only through 

EF and e, and that e has no direct dependence on E F • (It is a simple 
matter to generali7.e equation 45 for the situations where 0 has an 
explicit EF dependence.) 

The experimental information thus suggests that these assumptions 
are approximately correct, i.e., the dependence of X on volume 
appears to arise largely from the change in EF with V. This is an 
important fact which we will refer to a.gain below. 

2. The Behariour of K at l'ery high Pre881treS 

So far we have considered only the initial slope of the resistivity
volume curves. On the other hand, considerable information is 
available about the pressure dependence of resistivity at room tem
perature up to quite high pressures. The experimental work of Bring
man (1949, 1952), for example. extends up to pressures of about 100,000 
b at room temperature. }Teasurements to still higher pressures have 
been made by Stager and Drickamcr (1963) not only at room temper
ature but also at low temperatures (see also Bundy, 1959; BnJchn.n 
and Drickamer, I !l6I; Buntly and Strong 1962). 

JJ. 
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Figure 23 shows some of Bridgman's results in the form of relative 
resistivity versus relative volume for the alkali metals at room tem
perature. The notable feature of the curves in this Figure is that in 
Na, K and Rb the resistivity falls markedly with pressure and only 
begins to increase at very high pressures. By contrast the resistivity 
of Cs goes through a minimum at quite low pressures and then rises 
sharply: in J.i the resistivity increases at all pressures in this range. 

2·0r--------------, 

Cs 
Experiment; solids 

0'5 

o·g 0 ' 8 0'7 0'6 0'5 
VI 16 

FIG. 23. Bridgman's results of the alkali metals at 00 C. The curves show rela, 
tive resistance versus relative volume. 

An important point in understanding these curves is as follows. No 
phase transitions occur in the pressure and temperature range under 
discussion so that we may be confident that the mean-square ampli
tude of the lattice vibrations decreases monotonically with increasing 
pressure for all the metals throughout this pressure range. The lattice 
vibrations by thomseh'es, therefore. cannot account for the minima 
in these curves or for the positi,'e slope of the Li curve, These effects 
must therefore be attributed to the change in K with volume. In 
order to emphasize this point the relative values of K versus relative 
volume for all the metals are shown in Fif!, 24. (In order to obtain 
these curves, the change in 0 with yolume has been estimated from 
the compressibility of the metals.) It is clear that the main features 
of the e-V cllrve remain in the K- V curves. 
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FIG. 24. K versus volume in the alkali metals deduced from the data in Fig. 23. 

3. Compari8on with Liquid Metal8 

The effect of pressure on the alkali metals in the liquid state has 
not been studied over such a wide range as for the solids. Bridgman 
has however made some measurements on the liquids. Of Cs he writes 
(Bridgman, 1949, p. 282): "Because of the location of the melting 
curve it was not possible to measure the resistance of the liquid metal 
at pressures high enough to reach the minimum [in the ~p curve], but 
simple extrapolation indicates that 'without much question the. liquid 
will show the effect as well as the solid at temperatures above perhaps 
140°, and there seems no reason to think that the mechanism respon
lsible for the minimum has any essential <'<,>nnection with the lattice 
structure. " 

In Li, moreover, Bridgman finds that, as in the solid, the pressure 
coefficient of resistivity of the liquid is po.sitive (in magnitude it is 
about 33% greater than that of the solid). In the other metals Bridg- , 
man finds negative pressure coefficients of resistivity of ma,gnitude 
simila.r to those found in the corresponding solids. 

To sum up ,,,hat we know about the yolurne dependence of K: we 
know that: (1) at atmospheric pressure the sign of a In Kia In V is 
different in c1itTprf'nt meta.ls; (2) for the monovalent metals the sign of 
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oin K/oin V correlates with the sign of the thermoelectric po\ycr. 
(There is also rough correlation between its magnitude and the quantity 
~ derh'ed from the temperature dependence of the thermo-power); 
(3) the variation of resist,jvity with yolume O\'er a wide range of volum
es shows a rather diverse pattern of behM'iour in the alkali metals; 
the beluwiour of K is (Iuite similar; (4) the variation of resistivity 
with volume in the liquid metals appears , as far as it is known, to be 
quite similar to that of the corresponding solids. 

With these ideas in mind we will no\\' look at some ofthe theoret.ical 
interpretations of how K depends Oil \·olume. 

E. THEORETICAL ',ORK 

As I huye mentioned above, the conventional way of calculating 
electrical resistidty is to consider in detail the geometry of the scatter
ing processes and this combined with a knowledge of the electron
phonon matrix elements and the phonon dispersion curves enables 
the resistivity to be calculated (cf. Bardeen, 1937; Ziman, 1954; 
BailYll, 1960). To calculate how the resistivity varies with volume we 
must therefore know how all these features change under compression. 

Bailyn (1960) made calculations of the effect of pressure on the resis
tivity of the alkali metals, In his model, the electron properties were 
derived from quantum-defect calculations although for simplicity the 
Fermi surfaces were treated as spherical both at normal pressure and 
under compression, Bailyn emphasi7.ed, llOwever, that he did not 
expect the model to represent the behaviour of Li welL His results 
indicate a faU in electrical resisti\'ity with pressure for all the alkali 
metals: they cannot therefore explain the rather diverse behaviour 
found b.\' experiment. 

Subsequcntly, it was generally supposed that the varied effects of 
pressure on resistivity <:ould be explained in terms of the progressive 
distortion of the Fermi surface under pressure and that the different 
behaviour of the djfferent metals \"as due to the clifferent degrees of 
distortion (Cohen and Heine, ] 958: Dugdale, 1961; Ham, 1962), The 
emphasis hcl'E' was \'ery JlllIl'h on the geomctry of scattering, although 
of course the matrix elements themseh-cs anu the electron yelocities 
would be altered. No detaileu calculations were attempteu anel 110 

qllantitati\'e estimates were made until t he work of Hasega wa. 

:-'" .. t!. 
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Hasegawa (1964) made calculations of the pressure dependence of 
the resistivity of Li, K and Na. In all three metals he assumed that 
the phonon anisotropy was essentially unchanged by pressure. Ex
periments have shown t.hat this is true for Na and K, and approxima
tely so for Li (see Table III). In Na and K, Hasegawa assumed that, 
the shape of the Fermi surfaces was also unchanged by pressure, i.e., 
that the surfaces remained effectively spherical. This means that in 
these two metals the geometry of the scattering processes is not altered 
by pressure, and therefore apart from the change in lattice vibrations 
the main effect of pressure is 011 the Fermi energy, the screening effects 
of the conduction electrons and on the matrix elements. In Li, on 
the other hand, Hasegawa had to take account of the distortion of the 
Fermi surface under pressure. In order to do this he used the result .. 
of Ham's calculations: these, as we saw above, almost certainly exag
gerate the distortion of the Fermi surface both at normal pressure and 
under compression. Hasegawa's results are shown in Table IY and 
compared with the corresponding experimental data. It is seen that 
there is reasonable agreement between the two; on the other hand, 
because of the reliance on Ham's band structure calculations for Li 
it is hard to judge ho\y significant the agreement is in this case. ' 

Dickey et al. (196 i) used a different approach that has been remark
ably successful in accounting for the main features of the pressure 
dependence of resistivit;; in the alkali metals. The model of a metal 
used by Dickey et al. is based on the idea of the neutral pseudo-atom 
(see for example. the exposition of this idea by Ziman. 1964). 

The first problem to be tackled is that of a single ion of the metal 
under consideration immersed in a free-electron gas of the appropriate 
Fermi energy, i.e. , the Fermi energy that corresponds to the volume 
of the metal occupied by the number of conduction electrons proper 
to that metal. Obviously , varying the volume of the metal will varv the 
Fermi energy. A calculation is now made, in terms of phase shifts. 
of the scattering of electrons at the Fermi energy by the potential due 
to this ion. The potential of t he ion is <1, combination of: 

(1) The electron-ion potential ; this is derived for the free ion by 
means of a Hartree-Fock-Slater calculation (and is taken ov~r 
from existing calculations). 

(2) A screening potential chosen to sati:;;fy the Friedel sum rule. 
This rule essentially ensures tlHLt the screen ing charge aroUlHl 
nny ion is just sufficient to proyide electrical neutrality. 

- ; 
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The screening in the Dickey-Meyer-Young model is chosen to have 
the simplest form consist ent with eliminating the long-range coulomb 
field of the ion. It is therefore chosen to be ofthe form of the coulomb 
potential of a single charge outside a radius ro and to be constant inside 
thi3 radius. ro is then chosen to satisfy the Friedel sum rule. It is thus 
equivalent to spherical shell of charge of suitable radius. 

In this way a set of phase-shifts, 7]1 is obtained for each metal at 
several different volumes. A change in volume alters the Fermi level, 
as mentioned above, and also the screening radius. 

So far the calculation is for a single individual screened ion. In 
order to calculate the properties of the metal (either solid or liquid), 
a suitable array of these ions is assembled; the resistivity is then cal
culated on the basis of a structure factor appropriate to this array. 
The relevant expression for the electrical resistivity is then as follows 
(based OJi a Debye model to deduce the structure factor): 

f! = 2'.'3 (likF)3 aR ks T (46) 
e2 M(ks 0)2 

where: 
(47) 

Here 0 is the Debye temperature, 7.:8 Boltzmann's constant, e the 
electronic charge and kF the Fermi radius. It is therefore clear tha,t the 
expression (46) has the same form as that already discussed and that 
the parameter ]{ introduced earlier can be evaluated as: 

K= 2
2'a(likF)3 aR 

kse'!. 
(48) 

All details of the phonon spectrum, U- and N-processes, have been 
left out. The feature that has been carefully retained, by means of the 
phase-shift calculation , is the detail of the scattering potential. Now 
let us look at the results. 

Figure 25 shows how the phase shifts vary with volume for Li, K 
and Cs. In I .. i. the p phase shift is dominant throughout. In K, thc 
8, p and d phase shifts are all compa.rahle, although the d phase shift 
tends to dominate at the highest compressions. In Cs, the d phase 
shift. is important , though not dominant , from the outset and its 
importance increases with compression. 
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The physical origin of these effects can perhaps be understood as 
follows. In the free ion the possible electron states are bound levels, 
of which some are occupied. The occupied levels are the X-ray levels; 
above these are unoccupied levels, and transitions of an electron from 
one of these to another gives rise to the characteristic atomic spectrum 
of the element . 
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FIG. 25. Phn~e shifts in Li, K and Cs and the fllnction~ of rt'llltiYe volume· 
(From Dickey e/, af., 1967.) 

In the metal the X-ray levels remain filled. On the other hand, the 
outermost electron (in a monovalent metal there is just one of these 
per atom) forms part of the gas of conduction electron which, for 
simplicity, is here treated as a Fel'mi-Dirac gas of free particles con
fined to the \'olun\c of the metaL These particles in the Fermi ga.s 
screen the ion and, because of this, all the electron le\'els of the "free 
ion are mised in energy. This in turn causes the unoccupied le,-els to 
lie in the continuum of lewIs available to the electron gas (cf. Fig. 26). 
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These originally sharp levels are not only raised in energy. Those 
tha,t now lie in the continuum of states interact ",-jth these states and 
so broaden into resonances. The 8 like resonance is so broad as to be 
almost featureless and this may be considered as the principle origin 
of the conduction band. The p and d levels of the free ion are broaden
ed, but retain some sharpness. If these levels are near the Fermi level 
they gi\-e rise to enhanced scattering which is reflected in an enhance
ment of the corresponding phase shift. 

({3)' 
-1~1'- - - - - - -- - - - - - --- ( Broadened) 
-- - - -- - -- - - -- - ---- ( Broadened) 

, 

Is I (Occ,) 

Disfance (r) from nucleus 

F'IG. 26. Electron-ion pottmtial:"G, free ion; V, ion in a metal. The free-ion le vt>ls 
nre shown as continuous horizontal lines. The corresponding levels in the metal 
are shown dashed. 118 is highes t occupit>d level in tht> unexcited free atom. (From 
Dickey et al .• 19!i7.) 

The matter Illay be put differently and rather crudely as follows. 
In the free ion , an electron of the correct energy would be bound in the 
appropriate bound state. In the metal it may he thought of as bound 
for a short time alld then escaping into the continuum. The potential 
around the ion in the metal retains a "memory" of the free-ioll poten
tial fro111 which it arises. 

' » t 
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The main effee:t of pressure is to alter the Fermi level. Pres 'ure also 
alters the screening and hence the height of all the energy le\'els of the 
ions, but this second effect is slight. In Cs, the effect of compression is 
to raise the Fermi level towards the d resonance correspondinf! to the 
empty d bound state of the free ion. This accounts for the gradual CIl

hancement of the d phase shift on compression (see Fig. 23). Like
wise in Li, the p resonance has a dominant effect on the phase shifts. 
Similar though less conspicuous effects occur in the other metals. 

2,5.-------------,r---, 

Theory; solids 

2'0 

K 

0'5 L--_~ __ _'_ __ '__ _ __/.. __ _' 

1·0 0 '9 0'8 0'7 0'6 0'5 

VIVa 

FlO. 27. Cttlculated K vers\1S volume in the alkali metals (from Dickey e! ai., 
1967) to be compar!'d with Fig. ~4. 

As Dickey et rd. point out. their discussion is in some ways similar 
to the point of \'iew put forward by Fermi and yerified quantitatively 
by Sternheimer (1950) to account for the phase transition found in 
C::! by Bridgman at about 45 kb pressure. 

We return now to the calculation of electrical rcsisti\'ity. It is clear 
from equation (-l/) for the resistivity sca.ttering cross-section, that if 
one phase shift is large compared to the others. this tends to produce a 
high resistivity. The detailed calculations of the change of resistivity 
with voluml' for the whole alka.li metal series eonfirm this and show 
how the rise in rcsisth'ity under compression ill Li a.t all \'olumes and 
in Cs after slight e0l11p1'essio11 are reproduceci by theory (Fig. 2i). In 

* ' . a. 
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fact a. comparison between Figs 24 and 27 shmys that the theory re
produces qualitativel~' all the features found experimentally (see also 
Table IV). 

The absohlle magnitudes of the resisti"ities are not gi,en aecurately 
by the theory. presumably because of the crude approximation s in the 
treatment of the phonons. The fact that the relatit'e changes with 
volume are ,yell reproduced shows that these diverse effects of pressure 
arise from the details 0/ the scattering potential rather than from details 
of the phonon spectrum or of the Fe;mi surface. These are conclusions 
that we saw were suggested by other experimental features of the 
transport properties of the alkali metals and are fully confirmed by the 
calculations of Dickey et al. 

From the model itself it is possible also to calculate the thermoelec
tric power and its variations with pressure. The thermoelectric power 
is rather a subtle property, since its calculation requires a knowledge 
of the energy dependence of the electron scattering. Ne,'ertheless, the 
theory is reasonably successful in accounting for the magnitudes 
of the thermoelectric power (at high temperatures, where phonon 
scattering is dominant) and also for some important features of 
their pressure dependence (see Table V). In a subsequent article in 

. this series Professor X. H. 1\1arch discusses pressure effects in metals 
from a theoretical point of view (Vol. 3). 

TABLE V. ~ and its volume derivati\'e, derived from 
the thermoelectric power of the solid alkali metals at 0° C 

Metal 
; a in ~/a In V 

e x perhnent theory experiment theory 

Li -G·7 - 0·7 - 0·24 -0·:; 
Na 2·7 2·4 1·4 O·Gl 
K 3·8 3·2 -1·0 0 ·:15 
Rb 2·3 3·:J -O·:~ 0 ·2. 
Cs 0·2 O'G ",50 19 

F. DIPURITY SCATTERING 

The effect of pressure on the resistivity due to impurities, qo. has 
been studied quite cxt(,,~ lsivel~' in the noble metals by Linde (for a 
summary, see Gerritsen, 195t.i). Further work has been reported since 
then (Dugualc, 19650). The important feature of the measure
ments by Dugdale and Phillips (I'epol'ten in Dugdale, 1965u) 

j4 , i D 4 

i% i- t 



,O\Y TE)1PERATC"RES 

shows that the theory re
nd experimentally (see also 

ies are not given uc('urately 
rude approximations in the 

the 1'elative changes with 
~e diverse effects of pressure 
ial rather than from details 
rface. These are conclusions 
perimental features of the 
d are fully confirmed by the 

to calculate the thermoelec
!. The thermoelectric power 
lation requires a knowledge 
cattering. Nevertheless, the 
mting for the magnitudes 
mperatures, where phonon 
me important features of 
In a subsequent article in 
~s pressure effects in metals 

ath'e, derived from 
I alkali metals at 00 C 

periment 

-0·24 
1-4 

-1·0 
-0·3 
50 

tIC\G 

theory 

-0'0 
0·61 
0·35 
0·2j 

19 

due to impurities, qo , has 
ble metals by Linde (for a 
'ork has been reported since 

feature of the measure
rted in Dugdale, 1965b) 

, , 

J. S. DUGDALE 163 

is that they were made at 4'20 K (by the helium gas technique). This 
meant that it was possible to measure the effect of pressure on the 
residual resistivity of the noble metals containing other noble metals 
as impurity. Since these impurities cause relatively little scattering, 
this can hardly be done at room temperature when the phonon scatter
ing would dominate (at least in dilute alloys) . 

'What all these results emphasize is the variety of values (of both 
signs) that are found for a lneo/a In V. This presumably again arises 
from the details of the potentials of the sc<.tterers; here we are con
cerned with the difference in potential bet ween the impurity and the 
host lattice. To make realistic comparison between theory and 
experiment demands careful calculations similar to (but perhaps more 
difficult than) those of Dickey et al. (1967) on the alkali metals already 
referred to. These authors have in fact made calculations of the resisti
vities due to noble metal impurities in the noble metals themselves, 
but they conclude that their model is not very satisfactory for these 
systems. This is presumably partly because of the distorted Fermi 
surfaces in the noble metals but mainly because of the low lying d 
levels which o\-erlap to form a band and so alter substantially the 
electronic structure of these metals. 

G. PHONO'K AND DIPURITY SCATTERIXG BOTH PRESENT 

The effect of pressure on electrical resistivity due to phonons at low 
temperatures is almost invariably deduced from measurements on 
specimens whose resistivity is dominated by impurity scattering (cf. 
Fig. 28). This can give rise to error in the following way. 

Recent 'Work (Dugdale and Basinski. 1967) has focused attention 
on depat·tures from ~btthiessen's rule when two (or more) scattering 
mechanisms are present in the same metal with different anisotropies 
of relaxation times -r(k). The departure from l\fatthiessen's rule is 
mE:asured by a quantity LI defined as follows: 

(49) 

emeas is the measured resistivity of the specimen at some temperature 
T, epb is the resistivity of an ideally pure sample at the same tempera
ture and eo the resistivity measured at very low temperatures where 
12 has ceased to depend on temperature. 
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Normally one assumes that IHatthiessen's rule holds and that L1 = O. 
Thus: 

and so: 
a In Q = gph 8 In Qph + Qo. a In Qo 

8 In V (l 8 In V Q 8 In V 

(50) 

(51) 

8111 e d 8In go 
So if one measures at the temperature of interest an 

a In V 8ln V 
81n e h 

at some verv low temperature, P can be deduced from these 
~ a In V 

values and those of e and eo. 
Now suppose that instead 6f equation (50) we use the correct equa

tion (49): 

(lmeas = eph + Qo + J (52) 
Then we get: 

a In '! = gph 81n (!ph -!- go 81n go + ~ a In J (53) 
8 In V Q a In V e a In V g a In V 

In dilute noble-metal alloys (Dugdale and Basinski, 1967), it is found 
that with Au in Ag or Cu, L1 at the lowest temperatures is similar in 
magnitude or greater than (lph. This would mean that if one deduced 
a In epwa In V from low-temperature measurements on such alloys, 
assuming 1ratthiessen's rule, the result would be a factor or two or 
more too large. Similar (though probably slightly smaller) errors would 
be found with other impurities. 

An experimental example of ho\\" departures from )Iatthiessen's 
rule affect the deduced values of a In (lph/B In V is seen in the measure
ments of Dugdale and Phillips (1965) on two samples of Rb of very 
different purity (see Table 5 oftheir pu blication.) The less pure specimen 
shows a much biggcr apparent volume coefficient of phonon induced 
resistivity than the purer one. 

v. SO~[E COXCL"C"SIOXS 

In order to understand thc effeet of pressure on electrical resistivity 
at low temperatures (T ;:;; 0/3) we have to know how the properties 
of the Fermi surface, the phonon velocities and electron-phonon 
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matrix elements vary with pressure. At higher temperatures, this in
formation is still needed, but recent work by Dickey et al. has shown 
that the main features of the volume dependence of resistivity, at 
least in the alkali metals, depend on the electron-ion potential. The 
full detail of this potential must be retained if the model is to reproduce 
the more important features ofthe experimental results . To get detail-

o 2 , 

Temperolure (OK) 

FIG. 28. Resistance versus temperature in Rb at various pressures at low tern· 
peratures. (From Dugdale Ilnd Phillips, 1965.) 

ed numerical agreement will presumably require both this careful 
treatment of the potential and a more accurate treatment ofthe scatter
ing geometry. For the present, howe\"er, the important thing is that 
the potential plays a vital role in these calculations. 

This lesson would appear also to apply to the noble metals. Indeed 
many of the perplexing features of the transport properties of the 
monovalent metals (e.g., the anomalous sib'l1 of the thermo-power at 
high temperatures in Li, Cu, Ag, Au) may be resolved by paying more 
attention than hitherto to the electron-ion potential itself. 

The work discussed in this article has been determined largely by 
my own interests. Nevertheless, here as elsewhere, there is now a 
clear and welcome trend in high-pressure physics: the theory is begin-

--

....... 
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ning to be understood. The subject has for too long been characterized 
by an abundance of data and a dearth of understanding. The position 
is now changing fast. 
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