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I. INTRODUCTION

Three main reasons for wanting to use high pressures at low tem-
peratures can be distinguished as follows. In the first place,the phenom-
enon to be studied may itself be specifically confined to low tempera-
tures. We know from the third law of thermodynamics that a system
in internal thermodynamic equilibrium must take up an “ordered”

- state at sufficiently low temperatures; we may regard the onset of

superconductivity or magnetic transitions in certain alloys and insula-
tors as examples of this general tendency. To study such transitions
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under pressure thus demands the combination of low temperatures and
high pressures.

In the second place, we may wish to work at low temperatures
simply to get rid of thermal motion and its complications. As we
approach the absolute zero, we reach a condition where all changes are
governed by mechanical, as opposed to thermodynamic, criteria of
stability (i.e., the entropy terms in the free energy become negligible).
In this way, for example, a P-V measurement can reveal and reflect
rather directly the interatomic forees in a solid. Or again the mechani-
cal properties of solids may take on a special simplicity in the absence
of thermally activated processes.

Thirdly, the technique of investigation may itself require low tem-
peratures. For example, most of the standard methods of determining
Fermi surfaces require that the conduction electrons involved have
long mean free paths and this in turn implies the use of low tempera-
tures to diminish scattering by phonons.

In what follows we shall be concerned mainly with the effect of
pressure on electrical conductivity in metals, in particular at low
temperatures. However, in order to understand these effects, we
need to know as much as possible about their high-temperature be-
haviour. Moreover, as we shall see, we must also have as much infor-
mation as possible about the Fermi surface, the velocities of the con-
duction electrons and so on. We shall therefore also be concerned with
the recent developments in which measurements of the change in
Fermi surface under pressure are being studied.

In all that follows, we shall limit the discussion to the effect of
hydrostatic pressures.

II. TECHNIQUES

To work at low temperatures with high pressures introduces its
own problems. All substances under appreciable pressure become solid
at very low temperatures so that we have to contend first with the
problem of producing at low temperatures as good an approximation
as possible to a truly hydrostatic pressure. Various methods have been
used, but recent work has shown that some of these techniques are not
always satisfactory. General techniques for using high pressure at low
temperatures have been reviewed recently by Swenson (1964). We

——
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therefore mention here only those that are of particular relevance to

. work on Fermi surfaces and electrical conductivity. (But see also

Dugdale, 1965; Stewart, 1965; Levy and Olsen, 1965.)

A. LIQUID HELIUM

This is a straightforward method of producing pressure changes at
low temperatures, used originally by Kamerlingh Onnes and his
collaborators to study how pressure alters the superconducting transi-
tion temperature (Sizoo and Onnes, 1925; Sizoo et al., 1925). The
method is severely limited because helium solidifies under quite small
pressures at low temperatures; at 1° K, the solidification pressure is
about 25 b and at 4° K about 140 b (both pressures refer to He). The
method has, however, found useful applications recently (see below)
and is often valuable as a check against methods of transmitting pres-
sure that involve a solid transmitting medium.

B. THE ICE-BOMB TECHNIQUE

This method was introduced by Lazarew and Kan (1944). It uses

the pressure generated (up to about 1800 b) when water solidifies on
cooling at constant volume.

C. DIRECT COMPRESSION IN PISTON-CYLINDER ARRANGEMENT

In this method as originally used at low temperatures, the pressure
is transmitted by solid hydrogen, the hydrogen itself being first con-
densed into the working cylinder and then compressed by means of a
piston. The method was first used by Hatton (1955) to measure changes
in residual resistivity and superconducting transition temperature
under pressure. This direct-compression method, but using solid helium
as the medium, has also been used by Goree and Scott (1966) (see
below). The original reason for using hydrogen rather than helium was
that hydrogen, at low enough temperatures, condenses as a solid
whereas helium does not, except under pressure. For this reason,
hydrogen is rather easier to deal with.

Brandt and Ginzburg (1962) used a direct-compression method in
which friction between the specimen and the piston and cylinder was

8 H.P.R.
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reduced by a layer of graphite. The method could be used to very
high pressures (40 kb) and the pressure, in one version, could be changed
at the low temperature being used. On the other hand, in order to
secure an isotropic stress, the specimen had to undergo plastic defor-
mation. This may be allowable in some experiments such as the effect
of pressure on the superconducting transition temperature or on poly-
crystals; but it has to be eliminated in work on galvanomagnetic
properties where the damage may produce effects many times greater
than those being studied (Itskevich, 1964).

D. FROZEN OIL-KEROSENE

This method has been used by Gaidukov and Itskevich (1963) and
Itskevich (1964). In it the pressure (up to 15 kb) is first generated by a
piston in a cylinder at room temperature where the oil-kerosene
mixture is fluid. The fluid is then slowly solidified by cooling and
finally the whole cylinder and piston can be cooled to helium tempera-
tures.

E. CLAMP TECHNIQUES

These are extensions of the very-high-pressure techniques used at
room temperature. They have been much used in studies of the super-
conducting transition temperature and may well come into greater
use as the pressure range at low temperatures is extended. Some ver-
sions suffer from the disadvantage (as do the techniques A and D
above ) that the apparatus must be warmed to room temperature to
change the pressure. Some ultra-high-pressure techniques (up to
~500 kb) have also been used at low temperatures (see, for example,
Drickamer, 1965; Stager and Drickamer, 1963).

F. HELIUM GAS

In this technique the pressure is generated in fluid helium at a
temperature close to, but just above, the corresponding solidification
temperature (see Fig. 1). The helium is then allowed to solidify around
the specimen under study by careful cooling. This process can either
be at constant volume (as used originally by Dugdale and Hulbert,
1957) or at constant pressure. This latter method was introduced by
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Swenson and his collaborators and is a great improvement on the
constant volume technique (Hinrichs and Swenson, 1961; Schirber
and Swenson, 1961, 1962). It is an improvement in several ways:
first the retained pressure at the lowest temperature (after cooling the
solidified helium to say 1° K) is appreciably higher than in the con-
stant volume method where about one quarter is lost, largely because
of the contraction on freezing. Secondly the fluid pressure obtained
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Fie. 1. Melting curve and lines of constant volume in solid 4He: the numbers
indicate molar volumes. (From Dugdal, 1958.)

is known more accurately since the correction derived from the equa-
tion of state of helium is smaller (Dugdale, 1958); see Fig. 1. And
thirdly, the non-hydrostatic stresses imposed on the specimen can be
made extremely small. In the solidification process at constant pres-
sure the solid helium can grow from the fluid around the specimen
from the bottom; if this is done slowly there should be no shear stresses
on the specimen. Thereafter if the apparatus is cooled at constant
volume, non-hydrostatic stresses will arise only because of the differ-
ence in thermal expansion or contraction of the specimen and the solid
helium. At low temperatures thermal expansion or contraction is
small so that there will be no appreciable relative movement of solid
helium and specimen provided the initial temperature is not too high.
Consequently the pressure remains essentially hydrostatic.

When we come to consider the work on Fermi surfaces we shall have
occasion to compare directly the results of some of these techniques.

8=*
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They show that at least at the moderate pressures at which solid
helium has so far been used (below 10 kb), this method yields a very
good approximation to a truly hydrostatic pressure. In addition Goree
and Scott (1966) have made somedirect comparisons of variousmethods
of measuring the effect of pressure on electrical resistivity at low tem-
peratures. They used what I have called the “helium gas” technique
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F1a. 2. Typical initial pressure cycles with Ag compressed in piston-cylinder
arrangement. Sample resistance is plotted against sample pressure. (From Goree
and Scott, 1966.)

(in which the solid helium is formed from the fluid at the same pressure)
and the direct-compression method using both hydrogen and solid
helium as the pressure medium.

Of the first, the helium gas method, theyv say (p. 826): “We have
never encountered any case of detectable deformation or hyvsteresis
in the resistance measurement when the experiments were carefully
performed in this manner.”

To test the direct-compression method, they chose a soft metal, sil-
ver, and compressed it at 4:2° K using both solid helium and solid
hydrogen. They found as they expected that there was significantly
less deformation of the sample (as estimated from hysteresis in its
resistance values) when solid helium was used rather than hydrogen.
Figure 2 shows a typical initial pressure cycle on silver obtained by the
piston-cvlinder method using solid helium.
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Although they recognized that their experiments were not compre-
hensive, Goree and Scott concluded: *‘(1) helium is a superior quasi-
hydrostatic pressure transmitting medium to hydrogen in piston-
cylinder apparatus, but the difference ..... may not be great.....
(2) Piston-cylinder experiments performed with care can give results
in fair agreement with accurate hydrostatic gas experiments but they
are tricky and unreliable .. ... (3) The two ice-bomb measurements
[due to Kan and Lazarew (1958)] are in marked and quite unreasonable
disagreement with all the others..... (4) The helium gas system
gives consistent, reproducible results and is greatly to be preferred
over the other pressure systems considered.” '

As we shall see below, there is other evidence to show that the ice-
bomb and related techniques do not give rise to hydrostatic pressures.
Goree and Scott also comment on the use of the sharpness of super-
conducting transitions as a criterion for having a good hydrostatic
pressure. Because the ice-bomb technique could give such a sharp
superconducting transition, this has been taken as evidence that the
pressure was hydrostatic. Clearly this does not follow; a uniform (but
non-hydrostatic) stress (e.g., a uniform shear) would give rise to a
sharp transition. But even this may not be a necessary condition; it
is, however, a reasonable assumption.

We now turn to the application of these methods to the determina-
tion of the properties of the Fermi surface in metals under pressure.

III. THE FERMI SURFACE AS A FUNCTION OF PRESSURE

There have been several attempts to determine how the shape of
the Fermi surface of a metal changes with pressure. Here we are prima-
rily interested in the monovalent metals, since these are in some ways
the simplest theoretically, particularly from the point of view of
transport properties, and since their properties have been studied more
intensively than those of other metals. On the other hand metals such
as Zn, Pb and Al (on which pressure measurements have recently been
made), have been shown to approximate well to the nearly free electron
model of a metal. For this reason and because the work on Zn makes
possible a direct comparison of several high pressure techniques we shall
begin by having a look at some of the work on the Fermi surface of
these metals. In order to understand the results and the significance

R
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of this work, we are ultimately led to consider the pseudo-potential
approach to the description of the Fermi surface and to consider how
it can predict pressure effects.

A. EXPERIMENTAL

The methods that have been used to determine the effect of pressure
on the Fermi surface and related properties of Zn are summarized in
Table I which refers to the techniques of producing the high pressures

TasLe L. Investigations of the effect of pressure on the Fermi
surface of Zn

Method of Methods of
Authors investigating producing
Fermi surface . pressure
Dmitrenko et al. Torque de Haas-van Ice-bomb
(1959) Alphen technique
Verkin & Dmitrenko  Torque de Haas-van Ice-bomb
(1959) Alphen technique
Gaidukov & Itskevich DMagnetoresistance Frozen oil-
(1963) oscillations kerosene
Balain et al. Ettinghausen-Nernst Liquid helium
(1960) effect
Schirber (1965) Oscillations in transverse Helium gas
magnetoresistance
Higgins & Marcus Torque de Haas-van Alloying
(1966) Alphen
O’Sullivan & Schirber de Haas-van Alphen Helium gas
(1966) (modulation technique) Liquid helium
Melz (1966a) de Haas-van Alphen Helium gas

(modulation technique)

already described. The methods of investigating the Fermi surface
which are of importance here will now be summarized.

1. The de Haas—van Alphen Effect (see, e.g., Shoenberg, 1957 )

This is probably the most important method of determining the
shapes of Fermi surfaces. The effect discovered by de Haas and
van Alphen refers to the oscillatory variation of the magnetic-suscepti-
bility of a single crystal of a metal when the applied magnetic field,
H, varies. The susceptibility is periodic in 1/H (more correctly 1/B)
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and from this period, P, the extremal cross-sectional area, 4 (or
areas) of the Fermi surface which is normal to the field, can be deter-
mined from the relationship:

__ 2me
AP

(1)

where e and % have their usual significance.

From the temperature dependence of the amplitude of the effect,
the effective mass

2| OF

for the relevant extremal orbit can be found. Once this is known, the
life time, 7, of the electrons in that orbit can also be found from the
field dependence of the amplitude.

In order to observe the effect wcz should be comparable or large
compared to unity and hw. > k7'. Here o is the appropriate cyclo-

e
tron frequency; w.= The first condition on w. implies that high

(4
fields are needed and long relaxation times, i.e., very pure materials
at low temperatures so that the conduction electrons are not scattered
too frequently by either impurities, imperfections or phonons. The
second condition ensures that separation of the Landau levels is large
compared to their thermal broadening.

There are several techniques commonly in use for observing de
Haas-van Alphen oscillations.
1. The torque method. In this the specimen is suspended from a torsion
element in a uniform magnetic field. The couple on the element is
then measured as a function of magnetic field for different relative
orientations of crystal and field. The method is generally used for
looking at small parts of the Fermi surface with comparatively small
cross-sections.
2. The pulsed-field method. In this technique large magnetic fields
(up to, say, 200 kG) are produced by discharging a bank of condensers
through a coil in which the specimen (suitably cooled) is placed. The
magnetization of the specimen is measured by a pick-up coil surround-
ing the specimen; effects due to the changing magnetic field are largely
compensated by means of a second pick-up coil connected in opposition
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to the first and subject to the same field. The output from the pick-
i up coils is then displayed on a cathode-ray tube, along with a signal
representing the field variation. This display can then be photographed
and the period of the oscillation can subsequently be measured.
3. The modulation technique. This technique was introduced by Shoen-
berg and Stiles (1964) and makes use of the extreme stability of super-
conducting magnets in their superconducting mode of operation. In
this method, the specimen is placed inside a superconducting solenoid
(giving, typically, fields up to 50 to 100 kG). When the current in the
solenoid has been raised to a suitable value, the value of the current
is made to change quite slowly (in some applications the magnet is
put in its superconducting mode to hold the field constant). An addi-
tional coil is then used to modulate the field in the specimen at quite
low frequencies (operation down to, say, 60 c¢/s presents no difficulties).
Since the susceptibility of the specimen is oscillatory, there is a non-
linear response in the specimen; for convenience the second (or higher)
harmonic of the input signal is picked up and amplified. From this
response as a function of the applied field the period of the de Haas—van
Alphen oscillations can be found.

Because the modulation frequency can be made so low, this method
lends itself readily to high pressure measurements; the superconduct-
ing solenoid, the modulating coil and the pick-up coil can all be out-
side the high-pressure vessel, which need contain only the single crystal
of the metal under study (see for example, O’Sullivan and Schirber,
1966; Melz, 1966b).

2. High-field Magneto-resistance

The oscillatory behaviour of the magnetic susceptibility known as
: the de Haas—van Alphen effect, just discussed, arises from the quanti-
: zation of the electron orbits in a magnetic field. These oscillatory effects
are observable if the mean free path of the electrouns is sufficiently
large or, differently expressed, if m.t > 1. Here @ is the cyclotron
frequency and 7 is the relaxation time of the conduction electrons
involved in the particular orbit considered.

Under these conditions many other properties show corresponding
oscillatory effects; in particular the resistivity of the sample in
high magnetic fields (the Shubnikov—de Haas effect — Shubnikov
and de Haas, 1930) and the Ettinghausen-Nernst effect. Both of these

e
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have been used to study the Fermi surface under pressure. As in the
de Haas-van Alphen effect the period of the oscillations as a function
of 1/H measures the area of the extremal cross-section(s) normal to H.

In addition to this oscillatory effect in the magneto resistance, the
field dependence of the magneto-resistance for different directions of
the applied field can be used to determine certain dimensions of the
Fermi surface related to its topology. This method was used by Caro-
line and Schirber (1963) to look for changes in the Fermi surfaces of
Cu and Ag under pressure. The main features of the method are as
follows. '

Lifshitz and Peschanshii (1958) have shown that multiply-connected
(open) Fermi surfaces show very characteristic behaviour in magneto-
resistance at high fields. In a closed Fermi surface all the electron
orbits in an applied magnetic field are necessarily closed. In these
circumstances the magneto-resistance o(H) saturates at high fields.
This is true provided that the metal is not a compensated metal, i.e.,
with equal numbers of electrons and holes. If the metal is compensated
with a closed Fermi surface o(H) varies as H? for all field directions
(see Fawcett, 1964).

In an open Fermi surface it may be possible to find for certain field
directions orbits that can, because of the topology of the surface,
never close. For these directions p(H) varies as H? whereas in the
others where only closed orbits can occur o(H) saturates. Of the possible
open orbits one kind (referred to by Chambers (1962) as type B open
orbits) can occur in a whole region of angles around certain symmetry
directions. The solid angles that enclose these directions that support
open orbits thus show on a stereogram as the boundaries of two-
dimensional areas. Type A open orbits can occur in planes of applied
magnetic field so that their directions are represented by lines on a
stereogram. The dimensions of these regions or lines can be found
because sharp peaks in the magneto-resistance are observed when the
applied field direction passes through a type A region or crosses a
boundary of a type B region. g(H) depends not only on the direction
of the applied magnetic field but also on «, the angle between the di-
rection of the open orbit and the direction of the electric current. In
fact o(H) varies as H? cos? « in directions where open orbits are in-
volved.

L
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3. Oscillatory Ettinghausen—Nernst Effect

This method was used by Balain ef al. (1960) in their work on the
Fermi surface of Zn under pressure. The Ettinghausen—Nernst coeffi-
cient Bey (see, e.g., Jan, 1957) is defined by the relationship:

Ben = — Ey/H (3)

9y

GT)

In this is it supposed that, with no current flowing in the « direction,
a magnetic field, H, is applied along the z axis. A temperature gradient
87/3y 1is established along the y axis, and an electric field Ey in the
y direction is then observed (it is determined from the potential differ-
ence across the specimen in the y direction divided by the correspond-
ing thickness of the specimen).

The oscillatory part of the coefficient Bgy arises from the quantiza-
tion of the conduction electron orbits in the field, H, and their passage
through the Fermi level as in the de Haas—van Alphen effect.

The oscillations are likewise periodic in 1/H and their period, P,
is given by:

P = 2ne[Ah (4)

where A4 is the extremal cross-sectional area of the Fermi surface nor-
mal to H.

4. The Fermi Surface of Zn under Pressure

A comparison of the results from these different methods as applied
to Zn has been made by O’Sullivan and Schirber (1966) and is shown
in Fig. 3. This refers to the extremal cross-sections of the needles in
Zn with the magnetic field parallel to b4 (see Fig. 4); it illustrates that
the de Haas-van Alphen measurements are in very good agreement
with those from the oscillatory magneto-resistance measurements of
Schirber (1965). Both these sets of measurements used the helium
gas technique. Moreover, the results from these measurements are
strongly corroborated in two different ways:

(a) The initial slope is in close agreement with that found by Balain
et al. (1960) who used truly hydrostatic pressures transmitted by
liquid helium. Moreover, O’Sullivan and Schirber themselves used
the liquid-helium technique (up to 140 b) to check the pressure
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variation of the needle cross-sections. They did this using the
phase-shiftt de Haas-van Alphen technique, which is possible
when the pressure can be varied continuously without upsetting
the other experimental conditions (in particular, the temperature).

2:00 .
~Berlincourt and
A Steele (1954)

o.0'Sullivan and
Schirber (19686)

1'50 4 A-Schirber (1965)

a ,.Gaidukov and
) Itskevich (1963)

x-Dmitrenko ef @/, (1959)

N\

AS/S,
8

I
/

05
A
ok A
-0 I ! = \
1-8150 118200 1-8250 1-8300

c/a

Fic. 3. Change in extremal cross-section for needles in Zn as a function of rja
ratio (After O’Sullivan and Schirber, 1966.)

) F16. 4. Part of the Fermi surface of Zn. The “needles’” are the black ellipsoids
in the middle of the hexagon edges. (From O’Sullivan and Schirber, 1966.)

(b) The results of the pressure measurements form a smooth continua-
tion to smaller values of ¢/a of the data obtained by Berlincourt

1 For a description of this technique, see Section III D3 on noble metals.
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and Steele (1954).1 In the latter experiments the c/a ratio changed
simply because of the temperature change at constant (approxi-
mately atmospheric) pressure. As we shall see below, the almost
totally predominating factor that determines the cross-sectional
area of the needles is the c/a ratio. The results for the initial slope
of the S,-P curve are summarized in Table II.

TaBrLE II. Extremal cross-sectional area as a function of
pressure in Zn (needles with field parallel to b;)

olnsS, /0P Observer
32:0+1:5xX10-2h-1 O’Sullivan & Schirber (1966)
324+6x10-*h-1 Balain et al. (1960)
30+3%10-2b -1 O’Sullivan & Schirber (1966)
124+3Xx10-2b-? Gaidukov & Itskevich (1963)

We can therefore conclude that the consistency between these differ-
ent sets of experiments demonstrates that the helium gas technique
gives reliable and reproducible results. We see, however, in Fig. 3
that the results obtained by the ice-bomb technique and by the oil-
kerosene technique do not agree with each other or with the helium .
technique. The ice-bomb results are particularly notable because they
give the wrong sign for the effect. Melz (1966a) (see also O’Sullivan
and Schirber) has suggested that this effect can be understood as fol-
lows. In cooling the Zn crystal embedded in ice from the high tempera-
ture where the pressure is first generated, the crystal, because of its
anisotropic properties, contracts more in the ¢ than in the a direction.
Because the ice cannot readily flow to compensate for this, the pressure
in the ¢ direction is reduced relative to that in the @ direction. Thus the
c/a ratio is increased instead of decreased as it would have been under
hydrostatic pressure. Similarly, as both O’Sullivan and Schirber (1966)
and Melz (1966a) point out, effects of this sort, but to a lesser degree,
could account for the discrepancies in the measurements of Gaidukov
and Itskevich (1963) using the oil-kerosene technique. More recent
results at higher pressures (up to 15 kb) by Itskevich et al. (1965) in-
dicate that at these higher values the pressure produced by this
method may become more uniform and isotropic.

t In fact some re-interpretation of the data obtained by Berlincourt and Steele
was needed.

i d
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Because Zn is so anisotropic in its thermal contraction, this exag-
gerates the non-hydrostaticeffectsof methodsthat rely on setting up the
pressure in a solid at high temperatures. Presumably, these methods
would not fail so badly with cubic materials, but as we saw earlier
they may not be successful even then.

We have now seen something of the methods of measuring Fermi
surfaces under pressure. Let us now see what physical understanding
we can get from the results. A very important clue to our understanding
of several metals that have been investigated (e.g., Zn, Al, Pb, In)
is obtained from the nearly-free-electron model of the Fermi surface.
We shall therefore consider this before looking at the experimental
results in detail.

B. NEARLY-FREE-ELECTRON MODEL FOR ZN

If we have a gas of free electrons (i.e., independent electrons moving
in a uniform potential), the energy of an electron of momentum p or
wavenumber £ is just p2/2m or h24%/2m where m is the electron mass.
If the electrons form a completely degenerate gas, all the energy levels
up to a certain energy, Ef, are occupied (each level with two elec-
trons of opposite spin) and those above Eg are empty. The surface in
k space that separates the occupied from the unoccupied region is
called the Fermi surface and so for free electrons it is just a sphere:

hz o o o
™ (k3 + k5 +13) = Eg . )

The radius of the sphere thus depends on Eg, i.e., on the number of
electrons to be accommodated and on the volume available to them.

If we ignore the lattice potential inside a metal, and interactions
between the electrons, then in this simple approximation the Fermi
surface of the metal is a sphere in L space whose volume is just suffi-
cient to accommodate all the valence electrons of that metal. If the
metal has N atoms in volume J” with z valence electrons per atom

then:
2 -2F2 [ LAT\2
By = (-3_J5 a*h ( N ]a (6)
F1 4

2m V

where we have allowed for two electrons of opposite spin per trans-
lational energy level. Thus Eg varies inversely as two thirds power
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of the volume. Moreover, the Fermi radius Lg is related to £ by the
relation:

Ep = k2 k}/2m (7

so that Lr varies as V~13, i.e., inversely as the interatomic distance.
Thus the simplest effects of pressure on the Fermi surface would be
to increase the Fermi energy and Fermi radius.

So far we have ignored the effect on the conduction electrons of the
periodic potential inside the lattice. If the interaction of the electrons
with the lattice potential is very weak, it makes itself felt only when
the periodicity of the lattice in a particular direction coincides with
or is a multiple of the periodicity of the electron wavelength propa-
gating in that direction. On this basis the Brillouin zone structure of the
lattice is built up. If, in £ space, the X vector of a conduction electron
reaches from the centre of the Brillouin zone to a point on the zone
boundary then that electron satisfies the Bragg condition for reflection
by the set of lattice planes associated with the particular zone boundary.
Within a given zone, the surfaces of constant energy must be contin-
uous; only at the boundaries of the zone can discontinuities appear.
Thus , in the limit of a vanishingly small potential, the constant energy
surfaces are still spheres with modifications to their connectivity at the
Bragg-reflection planes. For this reason it is convenient to map back
into the first zone all the fragments of the surface that overlap into
the second zone; likewise for those fragments in the third zone and so
on. In this way, each sheet of the Fermi surface, corresponding to
each zone, forms a continuous surface when re-mapped. Harrison
(1966) has devised a convenient method of doing this mapping and
worked out the shapes of the various sheets of the Fermi surface
(contributed by different zones) for various lattice structures with
various numbers of valence electrons to the atom.

A simple illustration of the scheme is given in Fig. 5, which shows
the nearly-free-electron model of the Fermi surface of a simple square
lattice in two dimensions (cf. also Pippard, 1960). The reciprocal lattice
is then also a square lattice. The Fermi surface is now a circle and the
occupied region overlaps into the second Brillouin zone as seen in the
extended zone scheme at (a). In (b), the first sheet or band (i.e., the
occupied area in the first zone) is shown by itself unchanged; the
second sheet or bund. however, has now been re-mapped back into
the first zone. This is called the reduced zone scheme and represents the
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same information as in (a) but differently displayed; with suitable
labelling either is complete and unambigous. In (¢) are shown the first
and second bands in the repeated zone scheme, which brings out the
possible continuous orbits accessible to an electron on any particular
sheet (or band) of the Fermi surface. In (d) is shown Harrison’s con-
struction for deriving the reduced and repeated zone schemes.

(d)

Fic. 5. (a). Fermi surface and first two Brillouin zones in the extended zone
scheme. (b). First and second bands in the reduced zone scheme. (c¢). First and
second bands in the repeated zone scheme. (d). Harrison’s construction to derive
the reduced and repeated zone schemes. (After Jan, 1966.)

In a cubic material the effect of hydrostatic pressure on the Fermi
surface can easily be pictured to this degree of approximation. The
pressure decreases the volume of the metal in real space and so in
k space increases the volume, but not the shape, of the Brillouin zone.
The volume of the Fermi sphere is changed in exactly the same pro-
portions as that of the zone and so there is no relative change of Fermi
sphere and Brillouin zone. So to this approximation pressure does not
alter the relative size of different parts of the Fermi surface; everything
scales.

In a hexagonal metal, such as Zn, however, the situation is different.
Now pressure has the effect of altering the ¢/a ratio of the metal so
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that the Brillouin zone in this case both changes size and changes
shape under pressure. The extended Fermi surface remains, of course,
spherical and its size changes in inverse proportion to the volume
change of the metal. But because the Brillouin zone is changing shape,
the lines of contact of the Fermi sphere with the zone boundaries are
altered so that the sheets of the Fermi surface in the reduced scheme

(a) (b)
F1e. 6. The segment of the Fermi surface of a divalent hexagonal metal in the
nearly-free-electron approximation: (a), corresponding to an axial ratio of 1-633;
(b), corresponding to an axial ratio of 1-862. (From Harrison, 1965.)

change in magnitude relative to each other (cf. Figs. 6a and b).
Consequently we see that if pressure can alter the c/a ratio sufficiently,
it can change the connectivity of the Fermi surface. Lifshitz (1960)
predicted striking changes in the thermodynamic and transport pro-
perties of a metal at transitions where this connectivity is broken. The
search for such effects has been one of the impulses behind the study
of pressure effects in the hexagonal metals.

It is now clear how it is possible to calculate the changes in dimen-
sion of the different sheets of the Fermi surface of Zn when the c/a
ratio changes, provided that the nearly-free-electron picture holds
good. The geometry has been worked out in detail (Harrison, 1960;
Higgins and Marcus, 1966) and the predictions for changes under
pressure deduced. For example the extremal area of the needles
when the magnetic field is parallel to &, is given by:

[t

47 (22
S —_— — —_—
5 ‘ 162 ¢cla

9 a

~——t

1 2
T 1] (8)

where now Z = 2 for zine. (This expression is in the form given by
Higgins and Marcus, 1966.)
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O’Sullivan and Schirber use this expression to derive the pressure
derivative 3 InS,/3 P. With the appropriate values of (c/a) and its
pressure derivative, equation (8) yields a value for 9 1nS,/8 P of
13 X 10~2kb~! compared with an experimental value of 32 4 1'5x 102
kb7l The authors emphasize, however, that the direct comparison
must not be taken too seriously because of the extreme sensitivity of
the result to small variations in the initial c¢/a value.

To make a more realistic comparison of the nearly-free-electron
prediction, O’Sullivan and Schirber compare their result with meas-
urements of changes in S, due to alloying by Higgins and Marcus
(1966). On alloying, both the c¢/a ratio and the value of z (the number
of valence electrons per atom) may change: in the pressure experiments,
of course, only c/a changes. In their work, Higgins and Marcus found
that on adding Cu to Zn, the value of 3 InS,/3 Inp was 270 X 10% where
o = 2/(c/a). O’Sullivan and Schirber note that the contribution to
changes in S, from the factor ¢ in the denominator outside the square
bracket in equation (8) is negligible. Consequently, S, depends essenti-
ally only on z/(c/a),i.e., on p. Thus the pressure results can be compared
directly with those from alloying; from the pressure results, O’Sullivan
and Schirber deduce a value for 8 InS,/3 Inp of 2°78 X 102 which is very
close to the value deduced from the alloys.

In addition to these observations on the needles, O’Sullivan and
Schirber made measurements on other characteristic dimensions of the
Fermi surface of Zn. In general, they found qualitative agreement with
the nearly-free-electron model; if allowance is made for discrepancies
between this model and the true Fermi surface of Zn at atmospheric
pressure, the agreement is within a factor of about 2. O’Sullivan and
Schirber also made some rather more refined calculations (see Section
III D 3).

Measurements of effective mass, m¢g, were also made on Zn to deter-
mine how mg changes with pressure. The cyclotron mass is defined
in relation to . the cyclotron frequency as follows:

wem— H ©)

w, measures the angular frequency with which an electron executes
the particular orbit concerned when the applied field is H. In de
Haas-van Alphen measurements this will be an extremal orbit.

9 H.P.R.
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Measurements of m¢ are very valuable because they give a measure
of the velocity associated with the particular orbit. This may be seen
as follows. The equation of motion of an electron of wavenumber % in
a magnetic field A is:

as = evH (10)
ds

where v is the component of the velocity of the electron normal to H
and k changes in a direction at right angles to both » and H. Thus
the electron moves in an orbit on the Fermi surface in a plane normal
to H. The time taken to complete an orbit is thus, from equation
(10):

—cp - (11)
evH eH (v)

where [/ is the perimeter of the orbit and (v) is the harmonic mean of
the velocity round the orbit. Thus:

e e S B (12)

T l

and by comparison with the definition (9):

l

TS (13)

Thus if we know m_ for a sufficient number of orbits, we can in principle
find out how v varies over the Fermi surface.

We can use equation (13) to find out how m¢ should change with
pressure on the nearly-free-electron model. According to this model,
I, the perimeter of an orbit, must be proportional to Swhere S¥/?is the
area of the orbit in £ space (under pressure the orbits do not, except at
certain singularities, change shape but only size). Thus from equation
(13):

dlnm: 1 dinS din {v) (14)

dP 2 dpP dP

Now the velocity, v, is the same all over the Fermi surface in the
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approximation we are using here and is just proportional to kg, i.e.,
to V=13 where V is the volume of the metal. Thus:

dln mg _1 din S _lz (15)
dP 2 dP 3

av
where y = — % '?P;- , the isothermal compressibility of the metal.

O’Sullivan and Schirber tested this relation by measuring both the
change with pressure of my and of S (as we have seen) for the extremal
needle orbits normal to by. They found:

dln mg
dpP

= 14 x 1072 kbt

compared to:

S
16 x10-2kb—* for L 412
2 dp

(The second term on the right hand side of equation (15) is negligible).
This again illustrates the value of this very simple, nearly-free-electron
model of the Fermi surface. _

We now turn to the results on cubic metals, such as aluminium and
lead. Before doing so, however, we must see how the theory can be
extended to cope with the more subtle changes in the Fermi surface
under pressure in cubic materials where the approximation we have
used hitherto would predict only a simple scaling effect.

C. THE PSEUDO-POTENTIAL METHOD

The general philosophy behind the pseudo-potential method (for a
detailed account, see for example, Harrison, 1966) is that the forces
on an electron inside an ion core are (1) a large attractive interaction
with the nucleus and (2) a complicated interaction that arises from the
presence of the other occupied electron orbitals about the nucleus. In
some cases the second part can be considered to be derived from a
repulsive potential (the pseudo-potential) which largely offsets the
attractive potential corresponding to the first force. There thus re-
mains a small effective potential which can be treated by standard
methods, for example, by perturbation theory. '

g%
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The pseudo-potential method in its complete form “results from a
transformation of the Schroedinger equation applied to the lattice
potential, V(r), and is exact. In the transformation, the ordinary
lattice potential, V (), is as we saw replaced by a weak effective po-
tential part of which arises from the pseudo-potential. This in its full
generality, is a non-local integral operator, containing exchange terms
and terms that arise from the orthogonalization of the crystal wave
function to the occupied ion core electron states. The method becomes
particularly useful if:

(a) The pseudo-potential integral operator can be treated as essen-
tially a simple potential.

(b) The Fourier expansion of the resultant effective potential re-
quires only a few terms corresponding to small reciprocal lattice
vectors for its accurate representation.

In the above description I have used the term ‘‘pseudo-potential”
to refer to the repulsive part of the interaction that offsets the attrac-
tive interaction with the nucleus. The resultant interaction I have called
the “‘effective’ interaction. This seems to have been the original usage,
but it is now common to refer to the resultant potential as the pseudo-
potential and so I shall do so from now on.

The result of replacing the actual potential inside the crystal by the
weak pseudo-potential is that now the problem to be solved in finding
the band structure of the metal is formally equivalent to that of the
nearly-free-electron model of a metal. _

Let me briefly remind the reader of how a simple one-dimensional
calculation of this kind is carried out (Mott and Jones, 1936, p. 61).
In a periodic lattice of lattice spacing @, the solution of the Schroedin-
ger equation:

d2y

da?

2m
+ (E—T)p=0 (16)

is a Bloch function:

y= eikx u(x)

where u(z), like V(z), is periodic with the period a. Let us expand u(x)
in a Fourier series:
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ulz) = j‘ A, e~ j‘ A, o1 Knx (17

N=—x NnN—==—0o
2an ’ 5
where K, = — Suppose for simplicity that apart from the constant
term, A,, only one Fourier component K, is important; we then have:
p=e* (4,4 4, e K1¥) (18)
= A el 4 elfax where k&, =k — K,

Substituting this solution in the Schroedinger equation we find:

2
Aoeikx{_kz_i_%:_(E_V)}_}_Al.elklx[_kg_*_“;—?(E——V)]=0

(19)
If we multiply by e~""* and integrate from 0 to a, we get:
% 2
il oy [ - Vi
o A
@ 2md, _ix
—J;Te 11XV dzx=0 (20)

We choose our origin of energy so that the mean value of V vanishes,
ie.:

a
joV(x) dz=0 (21)
Thus we have:
Ao (£ — To) - A1 Vf =0 (22)
Similarly by multiplying by e~'*** and integrating we find:
— Ay Vy+ 4, (B — Ty =0 (23)
Here:
2
T, — h2 k2
2m
and:
2 1.2
T, — R k3
2m

(the free-electron kinetic energies corresponding to the values £ and

ky):

e ——
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1re .
¥i =—J V(x)e Kixdr
aJy

i.e., the Fourier component of the potential with period 1/a.
To find E. we must eliminate 4, and A, from equations (22) and
(23). In this wayv, we obtain:

(E—To)(E—T)—V,V$=0 @y
which gives:
1 .
E = ;[To + T 4+ V{(To —T)244V, 1 ’1"[ (25)
The resultant E-L curve is plotted in Fig. 7; it is of the familiar
form with energy gaps whenever the wavenumber of the electron

coincides with, or is a multiple of, the periodicity of the reciprocal
lattice. When k= £, so that Ty =T, it follows from equation (25) that:

E=T +|V,| ()

P ——

AE

m—s

w/a k—>

Fic. 7. E-L relation for nearly-free-electrons.

This specifies the range of forbidden values of E and the width of the
energy gap is thus:
AE =2{V,| (27)

Consequently the energy gap is determined by twice the corresponding
Fourier component of the potential.
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The above reasoning is easily generalized to three dimensions. The
critical values of % are then those on the walls of the Brillouin zone.
If % is close to a (111) face (in, say, an f.c.c. metal) then the Fourier
component V;, will be important. At the centre of this face this com-
ponent may suffice to determine the energy gap. Along the edge of a
zone where two faces meet (say the 111 and 200 zone faces of an f.c.c.
metal) then V,;, and V,y, may become important. At a corner, three
Fourier components may be required. This illustrates how the Fou-
rier components of the potential enter into the band-structure calcu-
lations. In addition we may note for future reference that in the
neighbourhood of a zone face we may expect that at least two plane
waves will be needed to specify the wave function of the electron, viz.:

e-ikr and e—i(k.—K,)r

where K is the reciprocal lattice vector associated with that zone face.
- All this is, of course, well known. What is new is its justification by
pseudo-potential theory in relation to at least some real metals.

The method is particularly useful for constructing a Fermi surface
from de Haas—van Alphen data. Where the model is most useful is,
as we have seen, where only a few Fourier components of the pseudo-
potential are significant. These (together with the Fermi energy) can
then be taken as parameters and chosen to give the best fit with experi-
ment in certain regions of the Fermi surface. Then the model can be
used to calculate the rest of the Fermi surface and the band structure
of the metal in the neighbourhood of Fermi energy. This phenomeno-
logical programme has, for example, been successfully carried out for
Pb by Anderson and Gold (1965) (where, however, the situation is
complicated by the strong spin-orbit coupling) and for Al by Asheroft
(1963).

The derivation of the Fermi surface, expressed in terms of a few
Fourier coefficients of the effective potential, does not by itself enable
us to predict what would happen to the surface under pressure. These
Fourier coefficients, V,,;, and V,q, say, are valid for one particular
value of the Fermi energy, and hence for one particular value of the
lattice parameter only (that corresponding to zero pressure). To make
any predictions about pressure effects. we need to know how V,,,,
Vago and Er change when the lattice parameter alters, thus changing,
among other things, the relative separations of the reciprocal lattice
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points. We must therefore extend the model; this has been done by
Harrison and others and we now consider this extension.

So far we have seen that if there exists a weak pseudo-potential that
can be treated by perturbation theory we have a valuable phenomeno-
logical method for interpolation and for correlating experimental data
about the Fermi surface. Now, however, we would like to know
something about this potential from a rather more fundamental point of
view. In particular, we want to know how to calculate the Fourier
components of the potential or, more generally, its matrix elements
between plane wave states. In this outline, we follow Harrison (1965,
1966).

We begin by assuming that there exists in the crystal a weak local
effective (or pseudo) potential, W(7), at each point. We then assume
that this total pseudo-potential can be represented as the linear super-
position of the individual ionic pseudopotentials centred on the ion

sites. Thus:
W(r)= %‘ w(|7—7;) (28)

where the 7; represent the positions of the N ions in the crystal, j
going from 1 to N. This is a most important assumption and we shall
discuss it below when we consider in more detail the nature of W
itself. For the present, however, the point is that if this linear super-
position holds then the matrix element of W (r) (between states & and
k + q) can be expressed as a product of two factors thus:

Wig) = S(q) w(k,q) (29)
where:

w(k,q) = —I—J e ik+ar () eikr dr
o B
is the matrix element of w(r) between plane wave states £ and & + gq.
w(k, q) is called the form factor; it is independent of the positions of
the ions and depends only on the ionic pseudo-potential. ¥ is here
the atomic volume.

If w(r) is a simple potential then the £ dependence in the two ex-
ponential factorsin w(k, ¢) cancels out and w(qg) is in this case just the
Fourier transform of w(r). For our present purposes this simpler form
is sufficient.

1 v i .
The factor S(q) = -V,‘, e~ js called the structure factor; by con-
1
trast with w(k, ¢), it depends only on the positions of the ions. For a
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perfect lattice at the absolute zero, it vanishes everywhere except at
the reciprocal lattice points where it has the value unity.

This factorization into a structure factor and a form factor, character-
istic of diffraction theory, is vital here.

We turn now to the calculation of the effect of volume on the Fermi
surface. One way to obtain such information is to make a calculation
using the full pseudo-potential theory, essentially a full orthogonalized
plane wave (OPW) calculation, at two different volumes. However,
there are simpler, through of course less exact, methods; one is to use
Harrison’s “‘point ion” approximation. In this, u(g) is derived by
representing the effective potential as made up of three contributions:

(1) The coulomb potential due to the valence charge on the ion.

(2) A repulsive term (originally referred to as the pseudo-potential)
arising from the core electrons. As already discussed, the con-
duction electrons are to some extent excluded from the core
because of the Pauli principle and because these inner shells are
already occupied.

(8) The potential due to screening by the conduction electrons. Be-
cause the conduction electrons in the metal are mobile they
move to regions of low potential and thus partly screen the bare
potential that the electrons would otherwise see; thus a self-
consistent procedure is required. Such a procedure was intro-
duced by Bardeen (1937) in his work on electron-phonon inter-
action in metals. For a free, degenerate electron gas of Fermi
radius, kp, the screening can be represented by an effective
dielectric constant of which the Fourier component of wave-
number ¢ is:

) =14 T [1—n21nl 147

1 0
ke [ 29 1—79 i+ ] (80

where 7 = ¢/2kr. Here m and e are the mass and charge of the
electron. Under these conditions, the ratio of wy(q), the bare
potential, to ws(g), the self-consistent screened potential, is just
&(g). It is in part the simplicity of this self-consistent screening
that makes it possible to represent the total crystal potential

as the linear superposition of the individual ion potentials.
In the point ion model, the repulsive potential in (2) above is repre-
sented by a é function (the ion core is considered as a point). If the
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strength of the é function is § then the form factor can be represented
by:

— (azeg?) + B in

w(q) = e
= Voelq)

where V), is the atomic volume.

Compressed
02
o,

o1t A

1 1 .
g 05 0 -5 20
q/k;
[} Normal

o2~

03

(4+q|w|#) In rydbergs

04

o5

06l

o7

Fi¢. 8. Form factors for Al at normal volume and for lattice spacing reduced

by 109%; the points are computed from the full pseudo-potential theory, and the

curves correspond to results calculated from the model form factor. (From Harri-
son, 1965.)

An illustration of such a form factor is given in Fig. 8. This is as
calculated by Harrison for Al at two different atomic volumes, the
normal volume and that corresponding to a 109, reduction in lattice

parameter. In the Figure the points have been calculated from the

full pseudo-potential theory whereas the lines are derived from the
simplified form factor expressed in equation (31). In the second deri-
vation both = (= 3 for Al) and B are constant. The parameters that
change with pressure are V,, Zr and hence £(g). Thus apart from the
volume itself the only change is in &g, in the Fermi energy and hence
in the screening.

We shall see below to what extent this simplified model, the point
ion model, is successful in accounting for the effects of pressure on the
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Fermi surface of the simpler metals. The general procedure is to choose

a model form factor (e.g., of the Harrison type) and choose the param-
eters involved in it so that this form factor will reproduce what is
known experimentally about the Fermi surface of the metal at normal
pressure. As an example, w(g) for Al would have to take on the values
Vi and Vyy, (as calculated by Asheroft, say) when ¢ is equal in
magnitude to the corresponding reciprocal lattice vectors. Then the
new form factor corresponding to a different volume can be deduced
from the original one by suitably changing Z¢ and hence the values
of &(g).

Alternatively, the experimental results can be used to calculate
how the important Fourier components of the pseudo-potential vary
with volume. These values may then be compared with theoretical
expectations.

In using a simplified version of the form factor, it should be re-
membered that because it has been chosen to fit the Fermi surface at a
particular volume, this does not guarantee that it will be successful
at a different volume even when the screening has been suitably alter-
ed. The simplified version of the form factor may contain unphysical
assumptions that are concealed by the initial choice of parameters. The
physically reasonable extrapolation to a different volume may then
break down.

In what follows we shall compare theory and experiment for the
metals Al, Pb and Zn. In this we shall essentially be considering to what
extent a simplified form factor is successful in explaining the pressure
dependence of certain features of their Fermi surfaces. We consider
each of the metals in turn.

D. COMPARISON OF THEORY WITH EXPERIMENT

1. Fermi Surface of Al under Pressure

By way of illustration of the methods outlined above, let us con-
sider first the Fermi surface of Al. The measurements by Melz (1966b)
have already been referred to and we refer now to his calculations.
These calculations were based generally on the calculations of the Fer-
mi surface of Al made by Asheroft (1963) which was itself an exten-
sion of earlier work by Harrison (1959, 1960).
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Following Melz, we concentrate our attention on the y cross-section
whose position is indicated-in Fig. 9(a). It is the extremal orbit around
the point U whose position in the Brillouin zone is illustrated in Fig.
9(b). In order to understand what happens to the area of this cross-
section when the metal is compressed, we must look at the E-k

[170]
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~

F1e. 9. (a). Part of the 3rd zone Fermi surface of Al. (From Melz, 1966b.) (b).
First Brillouin zone of the f.c.c. structure showing labelling of some symmetry
points.

curves in the neighbourhood of the point U. The general form of the
E-k curves of Al in the specified symmetry directions as calculated
by Ashcroft (1963) is illustrated in Fig. 10. The general form of these
curves is quite similar to that for free electrons but with certain
degeneracies removed by the effect of the weak pseudo-potential.

The inset of Fig. 10 shows the region around U and our attention
is focussed on the highest of the 3 bands (U,); in particular on whether
this intersects the Fermi level. The Fermi level is also indicated in the
diagram.

The y oscillations are measured with the applied magnetic field in
the [110] direction and two points on the corresponding extremal
cross-section are indicated by A and B (Fig. 10). On going from U
towards I" (the centre of the zone) the E-k curve reaches the Fermi
level at A and on goirr from U towards X (the centre of the square
zone face) the E-k curve reaches the Fermi level at B.

The energy of the third band at U is given by:
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1 - S
EU3=TU+; { "’oo‘*‘(pmo‘LSIi )21 (32)

where T'y is the free-electron kinetic energy at U. The coefficients
Voo and V,;; have been referred to above; they may be thought of as
Fourier components of the lattice pseudo-potential or as matrix ele-

EANV AWV

Fermi energy

1

1o

TowardsI” U Towards X
k k

0 L1 [
r X W r + U X

Fia. 10. Calculated band structure of Al (from Ashcroft, 1963). E—k curves
in the neighbourhood of the point U.

ments of the pseudo-potential taken between 2 orthogonalized plane
waves differing by the reciprocal lattice vectors (200) and (111), re-
spectively. ¥V, and V,,, are positive. Moreover, Harrison (1965)
has estimated that the pseudo-potential coefficients for Al should in-
crease when the metal is compressed. Consequently, Ey, would in-
crease further above the free-electron value. Of course, both the free-
electron kinetic energy and the Fermi energy would increase on com-
pression, but these changes are small compared to the change in Ey,
(i.e., the energy splitting due to the pseudo-potential). The final re-
sult is that the whole third band is raised with respect to the Fermi
energy and so, provided that the band retains its shape, the Fermi
surface cross-section, y (measured by the distance A-B in Fig. 10),
will decrease under pressure.

To make a quantitative calculation of this effect, Harrison’s model
can be used in the manner indicated above to calculate the changes in
the pseudo-potential due to pressure.

Melz carried out these calculations and found that a higher-order
correction, arising from the next two higher energy levels, has a signif-
icant effect on the result. This higher-order effect can be put in without
introducing new parameters. His results are shown in Fig. 11, and can be
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compared with experiments. The Figure shows a comparison between
the results (a) of the effectively free electron model (b) of the three
OPW calculation without the higher order corrections and (c) of the
three OPW calculations with higher-order corrections. The agreement
of the latter with experiments is very good although the extreme

-0-02

AS/S,

-004

<

C , 1 i

o} 2 4 6 3
Pressure (kb)

Fic. 11. The pressure dependeunce of the y-[110] cross-section in Al. The points
are the experimental results (two different samples). The lines represent theoreti-
cal calculations: A, simple scaling of the Fermi surface; B, calculation based on 3
OPW Ashceroft pseudo-potential; C, 5 OPW caleulation. (From Melz, 1966b.)

closeness is almost certainly fortuitous. For our present purposes,
however, the point is that this sort of calculation can explain some of
the features of the pressure dependence of the Fermi surface of Al

Melz made further comparisons between experiment and theory,
although the other cross-sections do not lend themselves so readily
to theoretical comparison.

2. Fermti Surface of Pb under Pressure

Anderson et al.(1967) measured the effect of pressure on some extrem-
al cross-sections of the Fermi surface of Pb and used their results to
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estimate the variations with pressure of the appropriate Fourier coef-
ficients of the pseudo-potential. They found also that model potential
calculations correctly predicted the signs in the changes of V,,, and
Voo with pressure, although the magnitudes were wrong by a factor
of 5 or so. They concluded that calculations using more exact forms for
the potential were needed to make a satisfactory comparison between
theory and experiment.

3. Effect of Pressure on the Fermi Surface of Zn

As already mentioned, O’Sullivan and Schirber improved their esti-
mates of the pressure dependence of their S, cross-section by using a
three-OPW calculation based on a model potential rather like Harri-
son’s calculations on Al. Their model potential did not altogether agree
with deductions made from de Haas-van Alphen data of the Fermi
surface under zero pressure. They assumed, however, that it might
yield reasonable derivatives for the purpose of calculating pressure
coefficients. Their results agreed within a factor of 2 with their ex-
periments.

There have recently heen further measurements of In and Be and
in general it appears that the pseudo-potential theory in its simpler
forms can give at least a qualitative account of the pressure effects.

4. The Monovalent Metals

Considerable experimental work on the properties of the noble me-_
tals under pressure at low temperatures has been done, and so we
shall first look at the effect of pressure on the Fermi surface of these
metals before turning to the alkali metals.

5. Experiments on the Noble Metals

The shape of the Fermi surfaces of the noble metals is now well
established by a wide range of experimental techniques (see for
example Shoenberg, 1962, and Roaf, 1962).

The shape of the Fermi surface of a noble metal together with the
first Brillouin zone is illustrated in Fig. 12. This shows that the Fermi
surfaces of the noble metals touch the Brillouin zone boundaries on
the hexagonal {111} zone faces. The area of contact increases in the
sequence Ag, Au, Cu. The Fermi surface of Ag thus departs least from

S S —
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that of a sphere, but in all of them, because of the contact with the
zone boundary, the surfaces in the repeated zone scheme are multiply
connected.

Where the Fermi surface contacts the zone boundary is usually
referred to as the neck region; regions away from the necks are usually

=

Frc. 12. First Brillouin zone and Fermi surface of a noble metal (schematic).
The extremal belly and neck orbits with the magnetic field in the [111] direction
are shown.

referred to (following Shoenberg) as the bellies. As we shall see below
there are important regions, particularly in gold, where the surface
is significantly concave in the {110] direction.

The first experiments seeking to find out how the Fermi surfaces
of the noble metals changed under pressure were those of Caroline
and Schirber (1963) who measured the transverse magneto-resistance
at high fields to pick out the regions associated with open orbits. In
this way they could measure the angular diameter of the necks in the
Fermi surfaces of copper and silver from the angular separation of the
corresponding peaks in the transverse magneto-resistance; they were
thus able to concentrate directly on distortion of the Fermi surface,
since if the whole surface and Brillouin zone simply scale together
under pressure, the angular diameter of the necks does not change.
The method of applying pressure was by means of the helium gas
technique and they used pressures up to 2 kb. Their precision was such
that they could detect changes of 0°29% per kb in Cu and 0:3%, per
kb in Ag. No changes were detected.
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As we saw above, Shoenberg and Stiles (1964) introduced the modu-
lation technique for measuring de Haas-van Alphen signals in conjunc-
tion with the use of a superconducting magnet to produce the magnetic
field. In applying this method to determine the Fermi surfaces of the
alkali metals they used a fixed field and rotated the specimen; in this
way the signals measure directly departures of the surface from spheric-
ity, thereby providing a very direct and sensitive technique for metals
with nearly spherical Fermi surfaces. A further development came with
the application of the method to determining how tension alters the
Fermi surfaces of the noble metals (Shoenberg and Watts, 1965).
In this work the strains involved were very small (1073 or 1074, to
remain within the elastic limit). The authors achieved a high enough
sensitivity to measure the changes in cross-section of the Fermi surface
by observing changes in the phase of the oscillation in a fixed field of
about 50 kg. At this field the phase of the belly oscillations is about
10* and of the neck oscillations about 5Xx 102 Their apparatus was
sensitive enough to detect a change of phase of about !/,, of an oscilla-
tion, thereby making possible a sensitivity and accuracy of about 1
part in 10° for the belly and 1 part in 5 x 102 for the neck oscillations.

The application of this method to measurements of the effect of
pressure on the Fermi surface was made by Templeton (1966). He
again used the sensitivity that comes from observing a phase change
in a fixed field. In his apparatus he achieved a sensitivity of about 1
part in 107 for the belly oscillations. To measure distortions of the Fermi
surface he compared directly the relative phase of belly and neck
oscillations from the [111] direction. Because of the high sensitivity
of the method, Templeton could use the hydrostatic pressure (up to
about 25 atm) available with liquid helium at 1-2° K. Figures 13
and 14 illustrate the two aspects of this work. In Fig. 13 we see a
sequence of steps that record the change in phase of the belly oscil-
lationsin gold in a persistent field of 50 kg. Each step corresponds to
an increase or decrease of the pressure by about 35 b. Between each
step the limits of the particular de Haas—van Alphen cycle have been
checked by slightly perturbing the magnetic field (without, however,
permanently changing the persistent current). The results obtained
in this way were not entirely satisfactory, because to calibrate the
changes in phase in terms of the change in area of orbit requires the
assumption that the susceptibility oscillations are truly sinusoidal.
A null method was therefore used in which the phase shift produced

10 H.P.R.
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F1c. 13. Phase changes in the [111] belly oscillations of Au due to pressure
clLanges. The applied field is about 50 kG. (From Templeton, 1966.)

Pressure (atm)

32-5
Applied field (kG)
Fic. 14. Neck and belly oscillations in the [111] direction in the de Haas-van
Alphen effect in Au at three different pressures. The arrows indicate corresponding

belly oscillations and show the relative phase change with pressure. (From Tem-
pleton, 1966.)
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by the change of pressure was just offset by a suitable change in a
supplementary source of magnetic field. The phase shift could then
be calculated from the required field change.

In Fig. 14 we see how in Templeton’s method the relative phase of
belly and neck oscillations is compared at different pressures. In these
measurements there is no change of phase with pressure as long as
different parts of the Fermi surface just scale in the same proportion.
The method thus detects directly distortion of the Fermi surface with
pressure. In the Figure, the high-frequency oscillations arise from the
belly and the low frequency oscillations from the necks. The arrows
indicate one particular belly cycle; to follow its position without am-
biguity it is necessary to make measurements at smaller pressure
intervals than those illustrated in the Figure. :

Once the relative phase change between the belly and neck oscilla-
tions has been determined, we can then find the relative changes in
area, as follows. The cross-sectional areas .4, of the allowed orbits of
the electrons in a field H are given by:

A, =2a(n+y)eHk (33)

where y is a phase factor that we assume remains constant and = is an
integer. Now let Ny and Ng be the corresponding values of n 4 y
for the neck and belly oscillations, respectively, at a given value of
Hs

Therefore:

Ny - Ax (34)
Ng Ap

where Ay and 4 g are the cross-sectional areas of the extremal neck
and belly orbits.

Consequently if we fix on a given neck orbit and so keep Ny con-
stant but allow 4y and 4 to change because of the pressure, the
change in Ng is given by:

— - = (35)

It is clear from this result that if the two orbits scale in the same
A4y AAdg

proportion and 4 Ng = 0. From the experiment on

Ax Ap
10*
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the belly oscillations alone 4 Ag/4y can be measured rather accu-

AAy

rately, and so from the experiment that measures AN g, —A—h'- can be
N

accurately derived. Alternatively the relative change of cross-section

(4 4/4)n — (4 A/A)g may itself be the quantity desired.
Templeton’s results for the three noble metals are summarized in
Table III. They show that this providesa very accurate way of meas-

TaBLE III. Change of anisotropy and Fermi surface with pressure

Change in .
In elastic . .
9 Qp-h dln K anisotropy Dlsto.rtlon of
Metal oln ¥ Y — - Fermi surface
s dln 7  with pressure A
- (0°C) (d In 4) with pressure
(mmVJ+
Li —0-49 0-9 —2-3 —0-4
Na 4-6 1-3 2-0 0
K 56 1-3 3-0 0 Small
Rb 4:3 1-0 2-3 -
Cs 31 1-0 1-1 o
d In ry 1 "
[d ™% ] distortionf
Cu 3-0 2-0 —1-0 —0-87 —1-14+£0-2
Ag 3-9 24 —0-9 —0-84 —2:1+0-2
Au 55 3-1 —0-7 —21 —1-54+0-2

1 A4 is the anisotropy parameter 2 C,,/(C,, —C,,).
} This measures the distortion effect only; scaling effects have been subtracted.

uring essentially the pressure derivative of the different cross-sections
at P = 0. In all three metals, pressure increases the area of contact
at the zone boundaries, i.e., enhances the distortion of the Fermi
surface. Since this was written further experimental work has been
done on copper; see O’Sullivan and Schirber (1968), and Gerhardt
(1968). -

6. Experiments on the Alkali Metals

So far Templeton has made measurements on K under the pressures
available with liquid helium. He has measured the relative change in
area of orbits on several different and randomly oriented crystals.
The changes correspond, within experimental error, to those to be
expected from simple scaling of the Fermi surface to the relative
change in the size of the unit cell..
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7. Effect of Pressure on the Fermi Surfaces of the Monovalent Metals:
Theory

The theoretical situation is very much the inverse of the experi-
mental one. Detailed calculations of the effect of pressure on the band
structure of the alkali metals have been made by Ham (1962); on the
other hand very little work has been done on pressure effects in the
noble metals although, of course, the band structure of Cu at atmos-
pheric pressure has been studied in detail (see, for example, Segall,
1962, and Burdick, 1963). (But see added note on p. 141.)

8. The Alkali Metals

Ham’s calculations were based on the quantum defect method in
which the details of the electron -ion potential in the free state are fed
into the calculation directly through the quantum defect parameters
which characterize the atomic spectra of the elements. The main
purpose of the calculations was to illustrate the trend in the band
structures in going through the alkali metal series. This purpose is
particularly apposite in the present context because Ham’s results
can be compared, as we shall see in the next Section, with experimental
results on electrical resistivity for all the alkali metals and also with
the outcome of some of the theoretical calculations of resistivity in
the same group of metals.

The results of Ham’s calculations are very detailed: they give the
shapes of the Fermi surfaces, the electron velocities, density of states,
indeed all the band structure information not only at atmospheric
pressure but over a wide range of volumes.

It is not yet possible to compare Ham’s predictions about the in-
fluence of pressure on the Fermi surface of the alkali metals directly
with experiment, but it is possible to test his predictions about the
shape of the Fermi surfaces at atmospheric pressure, since these (ex-
cept for Li) are now well established experimentally (Shoenberg and
Stiles, 1964; Okumura and Templeton, 19635).

This comparison shows that Ham’s calculations consistently over-
estimate the distortions of the Fermi surface except in Na. In Na,
Ham predicted, and experiment has since confirmed, that the Fermi
surface is very nearly spherical. In going towards the heavier metals
the distortion, according to Ham, should be increased in the sequence
K, Rb, Cs. In Cs, the distortion should be so great that the Fermi sur-
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face should be nearly touching the zone boundaries. Likewise in Li,
distortion of the Fermi surface would be large and comparable to that
in Cs. The experiments have shown that in K the Fermi surface is
slightly more distorted than in Na though still very close to a sphere;
the radial distortion is about 1 in 103. In Rb, the distortion amounts
to about 19, in radius and in Cs (Okumura and Templeton, 1965) to
only about 5%, In lithium (Stewart et al., 1964) the Fermi surface is
known only from positron-annihilation experiments;these indicate a
radial distortion, as in Cs, of about 5%, We see, therefore, that the
calculations give the right trend of distortion among the alkali metals,
although numerically the agreement is not too close. One might, there-
fore, expect a similar result for the pressure dependence: ie., that
Ham’s predictions would be qualitatively correct, but might over-
estimate the effects. This would imply that the Fermi surfaces of Li
and Cs would be particularly susceptible to change under pressure.
So far, however, no experimental evidence on these two metals is
available. As we shall see below, however, Ham'’s calculations have
been used with some success to calculate changes of resistivity under
pressure.

9. The Noble Metals: Theory

Segall’s calculations of the Fermi surface of Cu at atmospheric
pressure illustrated the importance of the low-lying fully occupied
d band on the shape of the Fermi surface. Segall emphasized that the
interaction between the d levels and the sp energy bands depends on
the symmetry direction under consideration. It is particularly strong
in the [110] directions. Where this interaction can occur its effect is illus-
trated in Fig. 15. From this Figure it is clear that if the Fermi level lies
above the general average energy associated with the d levels, the effect
of this interaction is to push the E-/ curve of the s like electrons in
towards the origin. This means that compared to the free electron
sphere, the true Fermi surface of the noble metals tends to be pushed
in in the [110] directions. Such concave areas around the [110] direc-
tions are indeed found; they are particularly conspicuous in Au
and Cu. Since in the monovalent metals, one electron per unit cell has
to be accommodated within the Fermi surface, this inward bulging
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_implies that the surface must bulge out in some other directions.

Because of the energy gap at the [111] zone faces and because these
faces lie close to the undistorted Fermi sphere, the Fermi surface tends
to bulge towards these faces. This, together with the [110] conca-
vities, forces the Fermi surface actually to contact these [111] zone
faces. It is significant that the area of contact is greatest in Cu, which
has the highest d levels, next greatest in Au and least in Ag, which
has the lowest lying d levels.

.~ " d band

m—ae

k—>

F1c. 15. The effect of interaction between s and d bands (schematic).

On this basis one may conjecture that the influence of pressure on
the Fermi surface of the noble metals will make itself felt most strongly
through the d electrons. On compressing the metal, the d bands would
be expected to broaden in energy, and their mean energy to rise.}
This will increase the effects of the interactions between sp like and
d like energy bands, which in turn would exaggerate the distortion
already referred to. Consequently one would expect that pressure
would increase the areas of contact in the [111] directions and enhance
the concave areas in the [110] directions. The experimental results of
Templeton show that, at least as far as [111] directions are concerned,
these ideas correspond with what is found experimentally. There have
recently appeared some calculations of the effect of volume change -
on the Fermi surface of copper by Davis et al. (1968).

t A rough argument is as follows. Compressing the metal increases the overlap
of the original atomic d orbitals. Consequently the  band will broaden on com-
pression. A rise in the average band energy may be attributed to the increase on
compression of the exponentially varying repulsion between the closed shells.
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IV. ErFEcT OF PRESSURE ON ELECTRICAL CONDUCTIVITY

We turn now to the problem of understanding how the electrical
conductivity of a metal varies with pressure. We shall be concerned
almost exclusively with the monovalent metals, i.e., the alkali metals
on the one hand and the noble metals on the other. On the other hand,
there have been recent important theoretical developments relating
to the divalent metals (Vasvari and Heine, 1967; Vasvéri ef al., 1967)
stimulated largely by the experimental findings of Drickamer and
co-workers (Stager and Drickamer, 1963; Drickamer 1965; see also
the reviews by Lawson, 1956; Paul, 1963; and Landwehr, 1965).

A. PHONON—-SCATTERING PROCESSES

As a preliminary, let us consider briefly some of the mechanisms
that give rise to electrical resistivity in metals. The electric current is
carried by the conduction electrons, of which in the monovalent metals
there are just one per atom. These electrons form a highly degenerate
electron gas whose Fermi energy can be estimated on the assumption
that the conduction electrons form a free-electron gas confined within
the volume of a metal. The Fermi energy therefore depends on the
atomic volume of the metal and varies from about 80,000° K in Cu
to about 20,000° K in Cs (both at normal pressure). We see therefore
that even at room temperature the zero-point kinetic energy of the
electrons is very large compared with a typical thermal energy %7

At the absolute zero of temperature in a perfect lattice (i.e., a lattice
free from physical or chemical imperfections) the conduction electrons
may be thought of as waves propagating in a perfect periodic structure.
Consequently they can travel without being scattered, and the metal
would therefore have zero resistivity (this is not to be confused with
the superconducting state which has quite different and distinct prop-
erties).

All real metals have some impurities or physical imperfections, in-
cluding boundaries, that limit the conductivity of the metal in its
non-superconducting state. The resistivity that remains at the lowest
temperatures and is independent of temperature is called the residual
resistivity, g,. For very pure perfect metals, it can be made a very
small fraction of the room-temperature resistivity; typically, in such
pure metals, the ratio of room temperature to residual resistivity
may bhe 10* or more.
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The periodicity of the ideal lattice thus explains the vanishing of
resistance in pure, perfect metals as the absolute zerc is approached.
The success of the picture in this respect has tended to focus attention
on the periodic structure of metals even when their electrical conductiv-
ity at high temperatures is under consideration. As we shall see below,
this is in some ways a mistaken approach and for high-temperature
purposes this emphasis on the periodic lattice is not necessarily the
most helpful.

In addition to the electrical resistivity that arises from the scatter-
ing of the conduction electrons by chemical impurities and physical
imperfections there is also, at any temperature above the absolute
zero, scattering due to the thermal vibrations of the lattice, i.e., to
phonons. It is this scattering by phonons that gives rise to the tempe-
rature-dependent part of the electrical resistivity gph. As a first
approximation we assume that the total electrical resistivity, p, at
any temperature is given by:

e=20pnt 0 (36)

This is known as Mattheissen’s rule, and although a valuable generali-
zation it is not strictly valid, and as we shall see below it can, in cer-
tain circumstances, give misleading information.

We turn now to a more detailed discussion of the scattering of
electrons by phonons. Suppose that an electron of wavenumber & and
energy FE, is scattered by absorbing a phonon of wavenumber, ¢,
frequency w and energy ko into a state k* of energy E,.. Conservation
of energy then requires that:

B, — Ey=ho (37)

We also require that:
E—k=q+G (38)

where @ is a reciprocal lattice vector. This relationship is in some way
analogous to conservation of momentum. When @ is zero, we have a
socalled normal process and when ¢ is non-zero we have an Umklapp
process. The Umklapp process (U-process, for short) can be interpreted
in the following way. If " — k = G, this means that the electron
satisfies the Bragg condition for reflection from the lattice planes
corresponding to the reciprocal lattice vector ; consequently, we may
think of the scattering process, described by the process above, as
implying that the electron is scattered by a phonon of wavenumber ¢
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and at the same time Bragg-reflected by the appropriate lattice
planes. ‘

U-processes are very important because they provide a means by
which the momentum in the electron system can be communicated
directly to the lattice as a whole. They therefore provide an immediate
source of electrical resistivity. They are also important because @ is
a large vector and therefore even when ¢ is small, U-processes make
possible large angle scattering processes. This is particularly important
at Jow temperatures (Bailyn, 1960).

N | Yl
N T

Fie. 16. Normal scattering process. Fic. 17. Umklapp process.

The conservation of energy condition (equation 37) severely limits
the possible scattering processes. This is because % (which is of order
KT for T' < 0 and of order %6 at higher temperatures) is so small
compared to E that a phonon cannot significantly change the electron
energy. Moreover since, at normal temperatures, #7' itself is very
small compared to Ef, there are unoccupied electron states only very
close to the Fermi level; this in turn means that because of the Pauli
principle only electrons close to the Fermi level (effectively on the
Fermi surface) can be scattered and then only into other states (which
must of course be unoccupied) that are themselves on the Fermi sur-
face. This condition of scattering only from and to states on the Fermi
surface is observed in all subsequent discussions and illustrations of
scattering processes. (It applies, of course, equally to impurity scatter-
ing.)

In Figs. 16 and 17 a normal scattering process (or N-process) and a
U-process are illustrated. In the example shown, the Fermi surface
corresponds to a spherical surface and the Brillouin zone is shown as
square for simplicity. The important point is that the Fermi surface
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does not touch the zone boundary and this corresponds to the case of
the alkali metals at least at normal pressures. As we saw above, their
Fermi surfaces are nearly spherical and do not touch the zone bounda-
ries. (For the noble metals, however, the Fermi surfaces do touch the
zone boundaries and the distinction between N- and U-processes is
no longer useful.)

Fie. 18. A U-process in the repeated zone scheme showing minimum ¢ vector
for a U-process.

It is seen from Fig. 18 that when the Fermi surface does not touch
the zone boundaries, there is a minimum value of ¢ required to induce
a U-process. Let us suppose that ¢min is this minimum valuein a partic-
ular direction and that o is the corresponding frequency of the pho-
non propagating in this direction. Then at low temperatures the num-

Ao
ber of such phonons excited is proportional to e %7. If cisthe phonon
velocity, this probability may be re-written in terms of gmin as

e"_h"::?'m_. Clearly, therefore, under these circumstances, U-processes
must die out at sufficiently low temperatures. On the other hand, their
importance may persist down to quite low temperatures, if in some
directions ¢ is particularly small and ¢min not too large. Bailyn has
shown that this is true in the alkali metals. These metals are very
strongly anisotropic in their elastic properties and in certain directions
there are low-lying transverse modes of vibration which can cause
U-processes down to quite low temperatures. Moreover, because they
almost reverse the electron momentum, these processes dominate the
resistivity throughout the temperature region in which gpn is still
measurable (at the lowest temperatures gpy, is lost in the background
of residual scattering).
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The above expression for the probability of exciting a phonon which
can induce an U-scattering process shows that the electrical resistivity
at low temperatures is determined not only by the geometry of the
Fermi surface (which determines the value of gmi, in any direction)
but also by the elastic anisotropy of the crystal (which determines the
value of ¢ in any direction).

To understand the variation with pressure of electrical resistivity
at low temperatures, therefore requires that we know both how the
Fermi surface changes under pressure and how the elastic anisotropy
changes under pressure. In addition to all this we must also know how
the matrix elements for the electron phonon interaction change with
pressure. Some of this information is, as we have seen, now available
directly from experiment, but not all; a summary of the present situa-
tion is given in Table III.

B. TEMPERATURE AND PRESSURE DEPENDENCE OF RESISTIVITY
AT VERY LOW TEMPERATURES

At sufficiently low temperatures where the phonon wavelengths
are large compared to the interatomic distance, the continuum model
of a solid gives a good description of the elastic vibrations in real
solids. In this temperature region, the number of phonons varies as
T3. On the other hand the electrical resistivity due to these phonons
varies more rapidly; theoretically in the simplest case, it is expected
to vary as 7. The reason for this is illustrated in Fig. 19 which shows
that if an electron, travelling in the direction of the electric current,
is scattered by a phonon of wave vector ¢ through the angle @, as
indicated, its momentum in the direction of the current is reduced by

% Now @ = ¢/Kg

(1 — cos D). If @ is small, this approximatesto
and the magnitude of qoc7.

To determine how the resistivity depends on temperature, we must
take into account how the temperature alters both the number of
scatterers (the phonons) and the effectiveness of each scattering pro-
cess (i.e., the change in momentum induced). Consequently there is a
factor of 7 from this last effect in addition to the 7' that arises from
the variation of the number of phonons with temperature. If, therefore,
we are at low enough temperatures so that the U-processes are frozen
out, it can be shown that:

——— = — — e = e
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9pn X T%/0° (38)

where 0 is the characteristic lattice temperature of the metal. If the
volume of the metal is changed by pressure, 0 alters and this provides
one important mechanism for the change in resistivity with pressure
at low temperatures.

Fic. 19. Small angle scattering by phonons.

C. EFFECT OF TEMPERATURE AND PRESSURE ON ELECTRICAL
RESISTIVITY AT HIGH TEMPERATURES

At high temperatures, i.e., T > 0, most of the phonons that are
excited are of large ¢ vector (tvpically about half the dimensions of the
Brillouin zone) so that all collisions with phonons can produce a large
change in the momentum of the conduction electrons. We may there-
fore expect that the electrical resistivity due to phonon scattering will
depend directly on the number of phonons excited at a given tempera-
ture. Alternatively, looking at the problem in classical rather than
quantum terms, we may expect the resistivity due to the lattice vibra-
tions to be proportional to the mean square amplitude of these vibra-
tions. In either case we write:

Qph =K (39)

where 3/ is the mass of the ions that make up the lattice and K is a
parameter that involves all the complex interactions between the
conduction electrons and the ions.

If we compare equations (38) and (39) we see that at high tempera-
tures opp depends inversely on 02 and at very low temperatures in-
versely on 6% We also known that, in general, 0 increases with in-
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creased pressure. Consequently we may expect a decrease of gp, with
pressure due to the change in 6 to be very much bigger at low tem-
peratures than at high (cf. Fig. 20, which illustrates this in the alkali
metals).

v
%
\
)
20 \
\ K
_E \\‘o ¥ y '
\J“__‘\ - =
§ g st
L
= 3 Cs A
Q
< ® ) B
P
<& o} .
£
L Na
SN, » ™
ol o.ol‘-\' e -
1
o 100 200 300

Temperature (°K)
Fic. 20. Pressure coefficient of electrical resistivity in the alkali metals as a
function of temperature. {From Dugdale and Phillips, 19635.)

More generally we may write:
K, .
Oph = Fi (T'6) (40)

where K has the same meaning as before and f(7'/0) is some universal
function that varies as 7%/6% at high temperatures and as 7'%/6° at low
temperatures. Such a relationship is approximately true for several
different metals and if we suppose that it is true for one metal under
different pressures (with K and 6 dependent on pressure) then we
can relate the volume dependence of gpp to its temperature dependence
as follows (Dugdale, 1961; Dugdale and Gugan, 1962):

91In g,y . alnI\" n dlnb {1+ 91n gy,
dlnV dlnl 9ln ¥V dlnT

1 This may be seen erudely as follows. 8 characterizes the vibrational frequen-
cies @ of the lattice, and @?* in turn is proportional to the force constants, i.e., to
the second derivatives of the atomie potential with respect to distance. The effect
of pressure is to squeeze the potential well and hence to increase its curvature,
i.e., essentially the force constants.

(41)
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In this expression we are treating K and 6 and hence their volume
derivatives as independent of temperature. Consequently if the electri-
cal resistivity follows a reduced equation of state of the form shown in
equation (40), we expect a linear relationship between the logarithmic
volume derivative of gpn and its logarithmic temperature derivative.
This means that where the temperature dependence of gy, changes
rapidly with temperature the volume dependence will likewise change
rapidly. '
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Fic. 21. Relationship between volume coefficient and temperature coefficient
of resistivity. (From Dugdale, 1961.)

- This relationship has been tested experimentally and the results are
shown in Fig. 21 (Dugdale, 1961; Dugdale and Gugan, 1962). It is
seen that a relationship of this kind does indeed hold. On the other
hand we saw that the low-temperature behaviour of the electrical
resistivity depended on both the shape of the Fermi surface and on
the elastic anisotropy in a way that did not allow them to be separated
in any simple fashion. This means that 0 in equation (40) does not
describe simply the lattice properties of the metal and so the reduced
equation of state does not allow the lattice properties to be simply
separated out from the electron properties as was originally hoped.
The linear relationship in equation (41) is interesting and perhaps
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useful, but not of any fundamental significance. It allows us to under-
stand volume dependence at different temperatures in a phenomeno-
logical way but does not give us any deep insight into the processes,

D. CHANGE OF A WITH VOLUME

I have emphasized that at least at low temperatures the electrical
resistivity depends sensitively on the relative proportions of N- and
U-processes. This in turn depends on both the geometry of the Fermi
surface and the anisotropy of the phonon-dispersion curves.

At high temperatures, however, where all scattering processes, wheth-
er N or U, involve large-angle scattering, it is probably more legit-
imate to separate out the dependence of the vibration amplitude (or
the number of phonons) on volume from the other terms so that we
can focus attention on the volume dependence of the electron-phonon
interaction.

At high temperatures equation (39) applies. If we allow the pressure
to vary at constant temperature we have from this equation:

alngphzalnk _281116 (42)
dlnV dlnT alnV

In this expression we can estimate from the Griineisen param-

dInV
eter; this in turn can be determined from purely equilibrium measure-
ments on the metal since we have:

—8In0pImV =y="VpC, (43)

where 8 is the volume expansion coefficient, y is the compressibility
and Oy is the molar heat capacity at constant volume.

In this way we can estimate the change of # with volume, and so
determine the change of K with volume; cf. Table III. Table IV
gives theresults for the monovalent metals at 0° C. Our next problem
is to understand the values of 8 In K/0 In V listed in the Table. Be-
fore considering the theoretical work that has been done on this, there
are three further noints about the variation of K with volume that
must be brought out.
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TAaBLE IV. Values of In K/oIn V

Theoretical
Metal Experimental Hasegawa (1964) (Dickey et al.,
1967)
Li —2-3 —37 —1-1
Na 1-9 1-8 05
K 3-0 1-9 1-3
Rb 2:3 oo 1-1
Cs 1-1f “ie —0-2

1 There is considerable uncertainty in this value. According to Hasegawa (1964)
some experimental values indicate it might be negative.

1. Relationship with Thermoelectric Power

If the electrical resistivity of a metal arises from effectively elastic
scattering (e.g., impurity scattering or scattering by phonons at high
temperatures), the thermoelectric power may be expressed as:
n2 k2T [6 In G'(E)J

E=E,

44
3e ) (4

(see, for example, Mott and Jones, 1936).

This relationship expresses the fact that under these circumstances
and neglecting phonon drag the thermoelectric power should be linearly
proportional to the absolute temperature; this is found experimentally,
at least in the region of 7' ~ 0. Moreover, the coefficient of proportion-
ality should depend on the variation of the conductivity of the metal
with the energy of the conduction electrons at the Fermi level. If we
introduce the Fermi energy, F'r, measured from the bottom of the con-
duction band, we may rewrite equation (44) as follows:

n?k*T dlna(e)  a*k*T .
3¢E; 8InE 3¢Eg

S= (44a)
In this way we can obtain from measured values of S, a value for the
quantity &, which tells us how the electrical conductivity varies with
energy.

It is then found that the quantity & evaluated in this way for the
monovalent metals is closely related to the high-temperature value of
the volume dependence of the electrical conductivity (3 Ing/o InV).
If we eliminate from this volume dependence the change in the ampli-

11 H.P.R.
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tude in the lattice vibrations (which has no counterpart in {) we are
left with the quantity 8 InK/2 InV. A comparison between this quan-
tity and & shows that the two are approximately proportional to each
other. This is illustrated in Fig. 22. This figure shows not only the
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F1e. 22. Relationship between volume coefficient of K and thermoelectric
power. Note that —§ is plotted. (From Dugdale and Mundy, 1961.)

values of 8 InK/d In¥V and & for the metals under normal pressure, but,
for Cs, it shows values for the compressed metal. The approximate
proportionality is still valid (Dugdale and Mundy, 1961).

A possible interpretation of this relationship is as follows. Assume
that the electrical conductivity ¢ is a function only of the Fermi
energy, Er, the Debye temperature of the lattice, f, and the temper-
ature, 7', i.e., we write 0 = o(EF, 0,T); likewise the resistivity o = /o
depends on the same variables. Then:

Slng) __(8Ing _( Blna) din B¢
amv), |amV!, |8lmEg/,; dnV
8dlno dln 6
45
-*_(alnt‘J)E,..T din ¥ o)

This equation can be reduced on the basis of the following simpli-
fying assumptions:
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din 6 s Girtinii 2
— —v (the Griineisen paramete
dn v v en parameter)
dlno : .
P 2 at high temperatures (see equation 39 above)
n
din E¢ 2 3
= — —- on the basis of the free-electron model or
din V 3
the effective mass approximation.
Also:
el g defined i tion (45)
e M as defined in equation
oln By ), asde 4
[ SRe) _oy=Zs
dlnT 3

The left-hand side of this equation is just what we earlier denoted by -
9ln K/aIn V so that the relationship between this quantity and § is
established. The coefficient of proportionality on this simple treatment

2
is just 5 and this corresponds to the dashed line shown in Fig. 22.

The basis of this derivation is that o depends on V only through
Eg and 0, and that 0 has no direct dependence on Eg. (It is a simple
matter to generalize equation 45 for the situations where 6 has an
explicit Er dependence.) '

The experimental information thus suggests that these assumptions
are approximately correct, i.e., the dependence of K on volume
appears to arise largely from the change in E with V. This is an
important fact which we will refer to again below.

9. The Behaviour of K at very high Pressures

So far we have considered only the initial slope of the resistivity-
volume curves. On the other hand, considerable information is
available about the pressure dependence of resistivity at room tem-
perature up to quite high pressures. The experimental work of Bridg-
man (1949, 1952), for example, extends up to pressures of about 100,000
b at room temperature. Measurements to still higher pressures have
been made by Stager and Drickamer (1963) not only at room temper-
ature but also at low temperatures (see also Bundy, 1959; Balchan
and Drickamer, 1961; Bundy and Strong 1962).

11*
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Figure 23 shows some of Bridgman’s results in the form of relative
resistivity versus relative volume for the alkali metals at room tem-
perature. The notable feature of the curves in this Figure is that in
Na, K and Rb the resistivity falls markedly with pressure and only
begins to increase at very high pressures. By contrast the resistivity
of Cs goes through a minimum at quite low pressures and then rises
sharply: in Li the resistivity increases at all pressures in this range.

20

Experiment; solids

0 1 1 1
-0 09 08 o7 06 05

Fre. 23. Bridgman'’s results of the alkali metals at 0° C. The curves show rela-
tive resistance versus relative volume.

An important point in understanding these curves is as follows. No
phase transitions occur in the pressure and temperature range under
discussion so that we may be confident that the mean-square ampli-
tude of the lattice vibrations decreases monotonically with increasing
pressure for all the metals throughout this pressure range. The lattice
vibrations by themselves, therefore, cannot account for the minima
in these curves or for the positive slope of the Li curve. These effects
must therefore be attributed to the change in K with volume. In
order to emphasize this point the relative values of K versus relative
volume for all the metals are shown in Fig. 24. (In order to obtain
these curves, the change in # with volume has been estimated from
the compressibility of the metals.) It is clear that the main features
of the p-V curve remain in the K-V curves.
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Fic. 24. K versus volume in the alkali metals deduced from the data in Fig. 23.

3. Comparison with Liquid Metals

The effect of pressure on the alkali metals in the liquid state has
not been studied over such a wide range as for the solids. Bridgman
has however made some measurements on the liquids. Of Cs he writes
(Bridgman, 1949, p. 282): “Because of the location of the melting
curve it was not possible to measure the resistance of the liquid metal
at pressures high enough to reach the minimum [in the ¢—P curve], but
simple extrapolation indicates that without much question the liquid
will show the effect as well as the solid at temperatures above perhaps
140°, and there seems no reason to think that the mechanism respon-
sible for the minimum has any essential connection with the lattice
structure.” .

In Li, moreover, Bridgman finds that, as in the solid, the pressure
coefficient of resistivity of the liquid is positive (in magnitude it is
about 339, ¢reater than that of the solid). In the other metals Bridg- .
man finds negative pressure coefficients of resistivity of magnitude
similar to those found in the corresponding solids.

To sum up what we know about the volume dependence of K: we
know that: (1) at atmospheric pressure the sign of 91In K/d In V is
different in different metals; (2) for the monovalent metals the sign of
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dln K/oInV correlates with the sign of the thermoelectric power.
(There is also rough correlation between its magnitude and the quantity
& derived from the temperature dependence of the thermo-power);
(3) the variation of resistivity with volume over a wide range of volum-
es shows a rather diverse pattern of behaviour in the alkali metals;
the behaviour of K is quite similar; (4) the variation of resistivity
with volume in the liquid metals appears. as far as it is known, to be
quite similar to that of the corresponding solids.

With these ideas in mind we will now look at some of the theoretical
interpretations of how K depends on volume.

E. THEORETICAL WORK

As I have mentioned above, the conventional way of calculating
electrical resistivity is to consider in detail the geometry of the scatter-
ing processes and this combined with a knowledge of the electron-
phonon matrix elements and the phonon dispersion curves enables
the resistivity to be calculated (cf. Bardeen, 1937; Ziman, 1954;
Bailyn, 1960). To calculate how the resistivity varies with volume we
must therefore know how all these features change under compression.

Bailyn (1960) made calculations of the effect of pressure on the resis-
tivity of the alkali metals. In his model, the electron properties were
derived from quantum-defect calculations although for simplicity the
Fermi surfaces were treated as spherical both at normal pressure and
under compression. Bailyn emphasized, however, that he did not
expect the model to represent the behaviour of Li well. His results
indicate a fall in electrical resistivity with pressure for all the alkali
metals: they cannot therefore explain the rather diverse behaviour
found by experiment.

Subsequently, it was generally supposed that the varied effects of
pressure on resistivity could be explained in terms of the progressive
distortion of the Fermi surface under pressure and that the different
behaviour of the different metals was due to the different degrees of
distortion (Cohen and Heine, 1958: Dugdale, 1961; Ham, 1962). The
emphasis here was very much on the geometry of scattering, although
of course the matrix elements themselves and the electron velocities
would be altered. No detailed calculations were attempted and no
quantitative estimates were made until the work of Hasegawa.
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Hasegawa (1964) made calculations of the pressure dependence of
the resistivity of Li, K and Na. In all three metals he assumed that
the phonon anisotropy was essentially unchanged by pressure. Ex-
periments have shown that this is true for Na and K, and approxima-
tely so for Li (see Table III). In Na and K, Hasegawa assumed that,
the shape of the Fermi surfaces was also unchanged by pressure, i.e.,
that the surfaces remained effectively spherical. This means that in
these two metals the geometry of the scattering processes is not altered
by pressure, and therefore apart from the change in lattice vibrations
the main effect of pressure is on the Fermi energy, the screening effects
of the conduction electrons and on the matrix elements. In Li, on
the other hand, Hasegawa had to take account of the distortion of the
Fermi surface under pressure. In order to do this he used the results
of Ham’s calculations: these, as we saw above, almost certainly exag-
gerate the distortion of the Fermi surface both at normal pressure and
under compression. Hasegawa’s results are shown in Table IV and
compared with the corresponding experimental data. It is seen that
there is reasonable agreement between the two; on the other hand,
because of the reliance on Ham’s band structure calculations for Li,
it is hard to judge how significant the agreement is in this case.

Dickey et al. (1967) used a different approach that has been remark-
ably successful in accounting for the main features of the pressure
dependence of resistivity in the alkali metals. The model of a metal
used by Dickey et al. is based on the idea of the neutral pseudo-atom
(see for example, the exposition of this idea by Ziman, 1964).

The first problem to be tackled is that of a single ion of the metal
under consideration immersed in a free-electron gas of the appropriate
Fermi energy, i.e., the Fermi energy that corresponds to the volume
of the metal occupied by the number of conduction electrons proper
to that metal. Obviously, varving the volume of the metal will vary the
Fermi energy. A calculation is now made, in terms of phase shifts,
of the scattering of electrons at the Fermi energy by the potential due
to this ion. The potential of the ion is a combination of:

(1) The electron-ion potential; this is derived for the free ion by
means of a Hartree—Fock-Slater calculation (and is taken over
from existing calculations).

(2) A screening potential chosen to satisfv the IFriedel sum rule.
This rule essentially ensures that the screening charge around
any ion is just sufficient to provide electrical neutrality.
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The screening in the Dickey-Meyer—Young model is chosen to have
the simplest form consistent with eliminating the long-range coulomb
field of the ion. It is therefore chosen to be of the form of the coulomb
potential of a single charge outside a radius r, and to be constant inside
this radius. 7, is then chosen to satisfy the Friedel sum rule. It is thus
equivalent to spherical shell of charge of suitable radius.

In this way a set of phase-shifts, n; is obtained for each metal at
several different volumes. A change in volume alters the Fermi level,
as mentioned above, and also the screening radius.

So far the calculation is for a single individual screened ion. In
order to calculate the properties of the metal (either solid or liquid),
a suitable array of these ions is assembled; the resistivity is then cal-
culated on the basis of a structure factor appropriate to this array.
The relevant expression for the electrical resistivity is then as follows
(based on a Debye model to deduce the structure factor):

. 2",‘ (hkF)SO'R kBT (46)
T e M(kgh)
where: .
or = (47/kE) .;' Isin® (3, —my) (47)

Here 0 is the Debye temperature, kg Boltzmann’s constant, e the
electronic charge and £y the Fermi radius. It is therefore clear that the
expression (46) has the same form as that already discussed and that
the parameter K introduced earlier can be evaluated as:

w2 kePog s
kB e’

All details of the phonon spectrum, U- and N-processes, have been
left out. The feature that has been carefully retained, by means of the
phase-shift calculation, is the detail of the scattering potential. Now
let us look at the results.

Figure 25 shows how the phase shifts vary with volume for Li, K
and Cs. In Li, the p phase shift is dominant throughout. In K, the
s, p and d phase shifts are all comparable, although the d phase shift
tends to dominate at the highest compressions. In Cs, the d phase
shift is important, though not dominant, from the outset and its
importance increases with compression.
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The physical origin of these effects can perhaps be understood as
follows. In the free ion the possible electron states are bound levels,
of which some are occupied. The occupied levels are the X-ray levels;
above these are unoccupied levels, and transitions of an electron from
one of these to another gives rise to the characteristic atomic spectrum
of the element.
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Fi1c. 25. Phase shifts in Li, K and Cs and the functions of relative volume-
(From Dickey et al., 1967.)

In the metal the X-ray levels remain filled. On the other hand, the
outermost electron (in a monovalent metal there is just one of these
per atom) forms part of the gas of conduction electron which, for
simplicity, is here treated as a Fermi-Dirac gas of free particles con-
fined to the volume of the metal. These particles in the Fermi gas
screen the ion and, because of this, all the electron levels of the free
ion are raised in energy. This in turn causes the unoccupied levels to
lie in the continuum of levels available to the electron gas (cf. Fig. 26).
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These originally sharp levels are not only raised in energy. Those
that now lie in the continuum of states interact with these states and
so broaden into resonances. The s like resonance is so broad as to be
almost featureless and this may be considered as the principle origin
of the conduction band. The p and d levels of the free ion are broaden-
ed, but retain some sharpness. If these levels are near the Fermi level
they give rise to enhanced scattering which is reflected in an enhance-
ment of the corresponding phase shift.

(B)
W (Broadened)
P e (Broadened)
> 77 . - &
NS )7 L rp s i i ry A
b e e e 2 42 (1) defined)
s PR D 1 ) R AR 74
I(BI) ! /7, /, 7, s r—»
{o) Z ———={(Unocc.)
7 / (Unocc.)
{os} - va {Unocc.)
4
>
o
3
c
w

Distance (r) from nucleus

F1e. 26. Electron-ion potential: U, free ion; V, ion in a metal. The free-ion levels
are shown as continuous horizontal lines. The corresponding levels in the metal
are shown dashed. ns is highest occupied level in the unexcited free atom. (From
Dickey et al.. 1967.)

The matter may be put differently and rather crudely as follows.
In the free ion, an electron of the correct energy would be bound in the
appropriate bound state. In the metal it may be thought of as bound
for a short time and then escaping into the continuum. The potential
around the ion in the metal retains a “memory”’ of the free-ion poten-
tial from which it arises.
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The main effect of pressure is to alter the Fermi level. Pressure also
alters the screening and hence the height of all the energy levels of the
ions, but this second effect is slight. In Cs, the effect of compression is
to raise the Fermi level towards the d resonance corresponding to the
empty d bound state of the free ion. This accounts for the gradual en-
hancement of the d phase shift on compression (see Fig. 25). Like-
wise in Li, the p resonance has a dominant effect on the phase shifts.
Similar though less conspicuous effects occur in the other metals.
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F1g. 27. Caleulated K versus volume in the alkali metals (from Dickey e! al.,
1967) to be compared with Fig. 24,

As Dickey et al. point out, their discussion is in some ways similar
to the point of view put forward by Fermi and verified quantitatively
by Sternheimer (1950) to account for the phase transition found in
Cs by Bridgman at about 45 kb pressure.

We return now to the calculation of electrical resistivity. It is clear
from equation (47) for the resistivity scattering cross-section, that if
one phase shift is large compared to the others, this tends to produce a
high resistivity. The detailed calculations of the change of resistivity
with volume for the whole alkali metal series confirm this and show
how the rise in resistivity under compression in Li at all volumes and
in Cs after slight compression are reproduced by theory (Fig. 27). In
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fact a comparison between Figs 24 and 27 shows that the theory re-
produces qualitatively all the features found experimentally (see also
Table IV).

The absolute magnitudes of the resistivities are not given accurately
by the theory, presumably because of the crude approximations in the
treatment of the phonons. The fact that the relative changes with
volume are well reproduced shows that these diverse effects of pressure
arise from the details of the scattering potential rather than from details
of the phonon spectrum or of the Fermi surface. These are conclusions
that we saw were suggested by other experimental features of the
transport properties of the alkali metals and are fully confirmed by the
calculations of Dickey ez al.

From the model itself it is possible also to calculate the thermoelec-
tric power and its variations with pressure. The thermoelectric power
is rather a subtle property, since its calculation requires a knowledge
of the energy dependence of the electron scattering. Nevertheless, the
theory is reasonably successful in accounting for the magnitudes
of the thermoelectric power (at high temperatures, where phonon
scattering is dominant) and also for some important features of
their pressure dependence (see Table V). In a subsequent article in

“this series Professor N. H. March discusses pressure effects in metals

from a theoretical point of view (Vol. 3).

TaBLE V. & and its volume derivative, derived from
the thermoelectric power of the solid alkali metals at 0°C

& Oln§olnV¥v

Metal s .

experiment  theory experiment  theory
Li —6-7 —0-7 —0-24 —0-5
Na 2-7 2-4 1-4 0-61
K 3-8 3-2 —1-0 0-35
Rb 2-3 33 —0-3 0-27
Cs 0-2 0-6 ~50 19

F. IMPURITY SCATTERING

The effect of pressure on the resistivity due to impurities, o,, has
been studied quite extensively in the noble metals by Linde (for a
summary, see Gerritsen, 1956). Further work has been reported since
then (Dugdale, 1965b). The important feature of the measure-
ments by Dugdale and Phillips (reported in Dugdale, 1965b)
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is that they were made at 4:2° K (by the helium gas technique). This
meant that it was possible to measure the effect of pressure on the
residual resistivity of the noble metals containing other noble metals
as impurity. Since these impurities cause relatively little scattering,
this can hardly be done at room temperature when the phonon scatter-
ing would dominate (at least in dilute alloys).

‘What all these results emphasize is the variety of values (of both
signs) that are found for 8 Ingy/3 In V. This presumably again arises
from the details of the potentials of the scatterers; here we are con-
cerned with the difference in potential between the impurity and the
host lattice. To make realistic comparison between theory and
experiment demands careful calculations similar to (but perhaps more
difficult than) those of Dickey et al. (1967) on the alkali metals already
referred to. These authors have in fact made calculations of the resisti-
vities due to noble metal impurities in the noble metals themselves,
but they conclude that their model is not very satisfactory for these
systems. This is presumably partly because of the distorted Fermi
surfaces in the noble metals but mainly because of the low lying d
levels which overlap to form a band and so alter substantially the
electronic structure of these metals.

G. PHONON AND IMPURITY SCATTERING BOTH PRESENT

The effect of pressure on electrical resistivity due to phonons at low
temperatures is almost invariably deduced from measurements on
specimens whose resistivity is dominated by impurity scattering (cf.
Fig. 28). This can give rise to error in the following way.

Recent work (Dugdale and Basinski, 1967) has focused attention
on departures from Matthiessen’s rule when two (or more) scattering
mechanisms are present in the same metal with different anisotropies
of relaxation times (k). The departure from Matthiessen’s rule is
measured by a quantity 4 defined as follows:

A = Qmeas — %ph — Qo (49)

Omeas 18 the measured resistivity of the specimen at some temperature
T, ppn is the resistivity of an ideally pure sample at the same tempera-
ture and p, the resistivity measured at very low temperatures where
o has ceased to depend on temperature.
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Normally one assumes that Matthiessen’s rule holds and that A4 = 0.

Thus:
9 = Qpn + 0, (50)
and so:
dlno _ %n 81n o,y +&,_ 31no, (51)
dlnV o 8InV o 3lnV

d1no,

dlnV

ng ’
at the temperature of interest and

|
nV

So if one measures

n Qph
3anvV

at some very low temperature, can be deduced from these

values and those of p and g,.
Now suppose that instead of equation (50) we use the correct equa-
tion (49):

Qmeas = Cpn + 0o+ A (52)
Then we get: ,
dlng gy, Blngyy | ¢ Blng, 4 8lnd (53)

dalnV o d8lnV '~ o 8lnV o 8InV

=

In dilute noble-metal alloys (Dugdale and Basinski, 1967), it is found
that with Au in Ag or Cu, 4 at the lowest temperatures is similar in
magnitude or greater than gpp. This would mean that if one deduced
0 In ppp/0 InV from low-temperature measurements on such alloys,
assuming Matthiessen’s rule, the result would be a factor or two or

* more too large. Similar (though probably slightly smaller) errors would

be found with other impurities.

An experimental example of how departures from Matthiessen’s
rule affect the deduced values of 8 In gpp/3 In V' is seen in the measure-
ments of Dugdale and Phillips (1965) on two samples of Rb of very
different purity (see Table 5 of their publication.) The less pure specimen
shows a much bigger apparent volume coefficient of phonon induced
resistivity than the purer one.

V. Some CoxcLrsIioNs
In order to understand the effect of pressure on electrical resistivity

at low temperatures (7' < 0/3) we have to know how the properties
of the Fermi surface, the phonon velocities and electron-phonon
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matrix elements vary with pressure. At higher temperatures, this in-
formation is still needed, but recent work by Dickey ef al. has shown
that the main features of the volume dependence of resistivity, at
least in the alkali metals, depend on the electron-ion potential. The
full detail of this potential must be retained if the model is to reproduce
the more important features of the experimental results. To get detail-
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Fic. 28. Resistance versus temperature in Rb at various pressures at low tem-
peratures. (From Dugdale and Phillips, 1965.)

ed numerical agreement will presumably require both this careful
treatment of the potential and a more accurate treatment of the scatter-
ing geometry. For the present, however, the important thing is that
the potential plays a vital role in these calculations.

This lesson would appear also to apply to the noble metals. Indeed
many of the perplexing features of the transport properties of the
monovalent metals (e.g., the anomalous sign of the thermo-power at
high temperatures in Li, Cu, Ag, Au) may be resolved by paying more
attention than hitherto to the electron-ion potential itself.

The work discussed in this article has been determined largely by
my own interests. Nevertheless, here as elsewhere, there is now a
clear and welcome trend in high-pressure physics: the theory is begin-
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ning to be understood. The subject has for too long been characterized
by an abundance of data and a dearth of understanding. The position
is now changing fast.
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